메뉴 건너뛰기




Volumn 38, Issue 7, 2019, Pages 1262-1275

Minimum sample size for developing a multivariable prediction model: Part I – Continuous outcomes

Author keywords

continuous outcome; linear regression; minimum sample size; multivariable prediction model; R squared

Indexed keywords

ADULT; AFRICAN AMERICAN; ARTICLE; CONTROLLED STUDY; FEMALE; HUMAN; HUMAN EXPERIMENT; LINEAR REGRESSION ANALYSIS; LUNG FUNCTION; MAJOR CLINICAL STUDY; MEDICAL LITERATURE; OPTIMISM; PREDICTION; PREVALENCE; SAMPLE SIZE; COMPUTER SIMULATION; LUNG FUNCTION TEST; MULTIVARIATE ANALYSIS;

EID: 85055265422     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7993     Document Type: Article
Times cited : (162)

References (37)
  • 1
    • 84874455583 scopus 로고    scopus 로고
    • Prognosis research strategy (PROGRESS) 3: prognostic model research
    • PROGRESS Group. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.
    • (2013) PLoS Med , vol.10 , Issue.2
  • 3
    • 46049113347 scopus 로고    scopus 로고
    • Ordinal Logistic Regression
    • 2nd, Edition., Cham, Switzerland, Springer, Springer Series in Statistics (SSS)
    • Harrell FE. Ordinal Logistic Regression. In: Regression Modeling Strategies. 2nd Edition. Cham, Switzerland: Springer; 2015:311-325. Springer Series in Statistics (SSS).
    • (2015) Regression Modeling Strategies , pp. 311-325
    • Harrell, F.E.1
  • 4
    • 84874455583 scopus 로고    scopus 로고
    • Prognosis research strategy (PROGRESS) 2: prognostic factor research
    • Riley RD, Hayden JA, Steyerberg EW, et al. Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 2013;10(2):e1001380.
    • (2013) PLoS Med , vol.10 , Issue.2
    • Riley, R.D.1    Hayden, J.A.2    Steyerberg, E.W.3
  • 5
    • 84920623458 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration
    • Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-W73.
    • (2015) Ann Intern Med , vol.162 , Issue.1 , pp. W1-W73
    • Moons, K.G.1    Altman, D.G.2    Reitsma, J.B.3
  • 6
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statist Med. 1996;15(4):361-387.
    • (1996) Statist Med , vol.15 , Issue.4 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 7
    • 85055292302 scopus 로고    scopus 로고
    • Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes
    • Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Statist Med. 2018. https://doi.org/10.1002/sim.7992
    • (2018) Statist Med
    • Riley, R.D.1    Snell, K.I.E.2    Ensor, J.3
  • 8
    • 0035530906 scopus 로고    scopus 로고
    • Shrinkage and penalized likelihood as methods to improve predictive accuracy
    • Van Houwelingen JC. Shrinkage and penalized likelihood as methods to improve predictive accuracy. Stat Neerlandica. 2001;55:17-34.
    • (2001) Stat Neerlandica , vol.55 , pp. 17-34
    • Van Houwelingen, J.C.1
  • 9
    • 0025151933 scopus 로고
    • Predictive value of statistical models
    • Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Statist Med. 1990;9(11):1303-1325.
    • (1990) Statist Med , vol.9 , Issue.11 , pp. 1303-1325
    • Van Houwelingen, J.C.1    Le Cessie, S.2
  • 10
    • 0001573594 scopus 로고
    • Regression, prediction, and shrinkage
    • Copas JB. Regression, prediction, and shrinkage. J Royal Statist Soc B. 1983;45(3):311-354.
    • (1983) J Royal Statist Soc B , vol.45 , Issue.3 , pp. 311-354
    • Copas, J.B.1
  • 11
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statist Soc B. 1996;58:267-288.
    • (1996) J Royal Statist Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 12
    • 84942465542 scopus 로고    scopus 로고
    • How to develop a more accurate risk prediction model when there are few events
    • Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. BMJ. 2015;351:h3868.
    • (2015) BMJ , vol.351
    • Pavlou, M.1    Ambler, G.2    Seaman, S.R.3
  • 13
    • 84905060566 scopus 로고
    • Bootstrap Methods: Another Look at the Jackknife
    • Kotz S, Johnson NL, (eds), New York, NY, Springer, Springer Series in Statistics (SSS)
    • Efron B. Bootstrap Methods: Another Look at the Jackknife. In: Kotz S, Johnson NL. (eds) Breakthroughs in Statistics. New York, NY: Springer; 1992:569-593. Springer Series in Statistics (SSS).
    • (1992) Breakthroughs in Statistics , pp. 569-593
    • Efron, B.1
  • 14
    • 0031160755 scopus 로고    scopus 로고
    • Using regression models for prediction: shrinkage and regression to the mean
    • Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Stat Methods Med Res. 1997;6(2):167-183.
    • (1997) Stat Methods Med Res , vol.6 , Issue.2 , pp. 167-183
    • Copas, J.B.1
  • 15
    • 84879169822 scopus 로고    scopus 로고
    • Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data
    • Riley RD, Kauser I, Bland M, et al. Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data. Statist Med. 2013;32(16):2747-2766.
    • (2013) Statist Med , vol.32 , Issue.16 , pp. 2747-2766
    • Riley, R.D.1    Kauser, I.2    Bland, M.3
  • 17
    • 0001216360 scopus 로고
    • 2 measures based on Wald and likelihood ratio joint significance tests
    • 2 measures based on Wald and likelihood ratio joint significance tests. Am Stat. 1990;44(3):250-253.
    • (1990) Am Stat , vol.44 , Issue.3 , pp. 250-253
    • Magee, L.1
  • 20
    • 85009129532 scopus 로고    scopus 로고
    • A guide to systematic review and meta-analysis of prediction model performance
    • Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.
    • (2017) BMJ , vol.356
    • Debray, T.P.1    Damen, J.A.2    Snell, K.I.3
  • 21
    • 85055267920 scopus 로고    scopus 로고
    • Tufts PACE clinical predictive model registry: update 1990 through 2015
    • Wessler BS, Paulus J, Lundquist CM, et al. Tufts PACE clinical predictive model registry: update 1990 through 2015. Diagn Progn Res. 2017;1(1):20.
    • (2017) Diagn Progn Res , vol.1 , Issue.1 , pp. 20
    • Wessler, B.S.1    Paulus, J.2    Lundquist, C.M.3
  • 22
    • 77954833031 scopus 로고    scopus 로고
    • Genetic ancestry in lung-function predictions
    • Kumar R, Seibold MA, Aldrich MC, et al. Genetic ancestry in lung-function predictions. N Engl J Med. 2010;363(4):321-330.
    • (2010) N Engl J Med , vol.363 , Issue.4 , pp. 321-330
    • Kumar, R.1    Seibold, M.A.2    Aldrich, M.C.3
  • 23
    • 84928929655 scopus 로고    scopus 로고
    • The number of subjects per variable required in linear regression analyses
    • Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol. 2015;68(6):627-636.
    • (2015) J Clin Epidemiol , vol.68 , Issue.6 , pp. 627-636
    • Austin, P.C.1    Steyerberg, E.W.2
  • 24
    • 0034402611 scopus 로고    scopus 로고
    • Determining sample size for accurate estimation of the squared multiple correlation coefficient
    • Algina J, Olejnik S. Determining sample size for accurate estimation of the squared multiple correlation coefficient. Multivar Behav Res. 2000;35(1):119-137.
    • (2000) Multivar Behav Res , vol.35 , Issue.1 , pp. 119-137
    • Algina, J.1    Olejnik, S.2
  • 26
    • 0000727522 scopus 로고
    • Tables of the upper percentage points of the multiple correlation
    • Lee YS. Tables of the upper percentage points of the multiple correlation. Biometrika. 1972;59:175-189.
    • (1972) Biometrika , vol.59 , pp. 175-189
    • Lee, Y.S.1
  • 27
    • 38349160377 scopus 로고    scopus 로고
    • Toward using confidence intervals to compare correlations
    • Zou GY. Toward using confidence intervals to compare correlations. Psychol Methods. 2007;12(4):399-413.
    • (2007) Psychol Methods , vol.12 , Issue.4 , pp. 399-413
    • Zou, G.Y.1
  • 28
    • 34249875735 scopus 로고    scopus 로고
    • Confidence intervals for standardized effect sizes: theory, application, and implementation
    • Kelley K. Confidence intervals for standardized effect sizes: theory, application, and implementation. J Stat Softw. 2007;20(8):1-24.
    • (2007) J Stat Softw , vol.20 , Issue.8 , pp. 1-24
    • Kelley, K.1
  • 29
    • 34249876473 scopus 로고    scopus 로고
    • Methods for the Behavioral, educational, and social sciences: an R package
    • Kelley K. Methods for the Behavioral, educational, and social sciences: an R package. Behav Res Methods. 2007;39(4):979-984.
    • (2007) Behav Res Methods , vol.39 , Issue.4 , pp. 979-984
    • Kelley, K.1
  • 31
    • 0008679660 scopus 로고    scopus 로고
    • Increasing statistical power without increasing sample size
    • McClelland GH. Increasing statistical power without increasing sample size. Am Psychol. 2000;55(8):963-964.
    • (2000) Am Psychol , vol.55 , Issue.8 , pp. 963-964
    • McClelland, G.H.1
  • 32
    • 0032581454 scopus 로고    scopus 로고
    • A simple method of sample size calculation for linear and logistic regression
    • Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Statist Med. 1998;17(14):1623-1634.
    • (1998) Statist Med , vol.17 , Issue.14 , pp. 1623-1634
    • Hsieh, F.Y.1    Bloch, D.A.2    Larsen, M.D.3
  • 33
    • 0043109420 scopus 로고    scopus 로고
    • Sample size for multiple regression: obtaining regression coefficients that are accurate, not simply significant
    • Kelley K, Maxwell SE. Sample size for multiple regression: obtaining regression coefficients that are accurate, not simply significant. Psychol Methods. 2003;8(3):305-321.
    • (2003) Psychol Methods , vol.8 , Issue.3 , pp. 305-321
    • Kelley, K.1    Maxwell, S.E.2
  • 34
    • 37349102359 scopus 로고    scopus 로고
    • Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach
    • Kelley K. Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach. Behav Res Methods. 2007;39(4):755-766.
    • (2007) Behav Res Methods , vol.39 , Issue.4 , pp. 755-766
    • Kelley, K.1
  • 35
    • 41549115181 scopus 로고    scopus 로고
    • Sample size planning for statistical power and accuracy in parameter estimation
    • Maxwell SE, Kelley K, Rausch JR. Sample size planning for statistical power and accuracy in parameter estimation. Annu Rev Psychol. 2008;59:537-563.
    • (2008) Annu Rev Psychol , vol.59 , pp. 537-563
    • Maxwell, S.E.1    Kelley, K.2    Rausch, J.R.3
  • 36
    • 84962074698 scopus 로고    scopus 로고
    • Adequate sample size for developing prediction models is not simply related to events per variable
    • Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol. 2016;76:175-182.
    • (2016) J Clin Epidemiol , vol.76 , pp. 175-182
    • Ogundimu, E.O.1    Altman, D.G.2    Collins, G.S.3
  • 37
    • 42949108640 scopus 로고    scopus 로고
    • Sample sizes when using multiple linear regression for prediction
    • Knofczynski GT, Mundfrom D. Sample sizes when using multiple linear regression for prediction. Educ Psychol Meas. 2008;68(3):431-442.
    • (2008) Educ Psychol Meas , vol.68 , Issue.3 , pp. 431-442
    • Knofczynski, G.T.1    Mundfrom, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.