-
1
-
-
84874455583
-
Prognosis research strategy (PROGRESS) 3: prognostic model research
-
PROGRESS Group. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.
-
(2013)
PLoS Med
, vol.10
, Issue.2
-
-
-
3
-
-
46049113347
-
Ordinal Logistic Regression
-
2nd, Edition., Cham, Switzerland, Springer, Springer Series in Statistics (SSS)
-
Harrell FE. Ordinal Logistic Regression. In: Regression Modeling Strategies. 2nd Edition. Cham, Switzerland: Springer; 2015:311-325. Springer Series in Statistics (SSS).
-
(2015)
Regression Modeling Strategies
, pp. 311-325
-
-
Harrell, F.E.1
-
4
-
-
84874455583
-
Prognosis research strategy (PROGRESS) 2: prognostic factor research
-
Riley RD, Hayden JA, Steyerberg EW, et al. Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 2013;10(2):e1001380.
-
(2013)
PLoS Med
, vol.10
, Issue.2
-
-
Riley, R.D.1
Hayden, J.A.2
Steyerberg, E.W.3
-
5
-
-
84920623458
-
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration
-
Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-W73.
-
(2015)
Ann Intern Med
, vol.162
, Issue.1
, pp. W1-W73
-
-
Moons, K.G.1
Altman, D.G.2
Reitsma, J.B.3
-
6
-
-
0030069896
-
Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
-
Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statist Med. 1996;15(4):361-387.
-
(1996)
Statist Med
, vol.15
, Issue.4
, pp. 361-387
-
-
Harrell, F.E.1
Lee, K.L.2
Mark, D.B.3
-
7
-
-
85055292302
-
Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes
-
Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Statist Med. 2018. https://doi.org/10.1002/sim.7992
-
(2018)
Statist Med
-
-
Riley, R.D.1
Snell, K.I.E.2
Ensor, J.3
-
8
-
-
0035530906
-
Shrinkage and penalized likelihood as methods to improve predictive accuracy
-
Van Houwelingen JC. Shrinkage and penalized likelihood as methods to improve predictive accuracy. Stat Neerlandica. 2001;55:17-34.
-
(2001)
Stat Neerlandica
, vol.55
, pp. 17-34
-
-
Van Houwelingen, J.C.1
-
9
-
-
0025151933
-
Predictive value of statistical models
-
Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Statist Med. 1990;9(11):1303-1325.
-
(1990)
Statist Med
, vol.9
, Issue.11
, pp. 1303-1325
-
-
Van Houwelingen, J.C.1
Le Cessie, S.2
-
10
-
-
0001573594
-
Regression, prediction, and shrinkage
-
Copas JB. Regression, prediction, and shrinkage. J Royal Statist Soc B. 1983;45(3):311-354.
-
(1983)
J Royal Statist Soc B
, vol.45
, Issue.3
, pp. 311-354
-
-
Copas, J.B.1
-
11
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statist Soc B. 1996;58:267-288.
-
(1996)
J Royal Statist Soc B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
12
-
-
84942465542
-
How to develop a more accurate risk prediction model when there are few events
-
Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. BMJ. 2015;351:h3868.
-
(2015)
BMJ
, vol.351
-
-
Pavlou, M.1
Ambler, G.2
Seaman, S.R.3
-
13
-
-
84905060566
-
Bootstrap Methods: Another Look at the Jackknife
-
Kotz S, Johnson NL, (eds), New York, NY, Springer, Springer Series in Statistics (SSS)
-
Efron B. Bootstrap Methods: Another Look at the Jackknife. In: Kotz S, Johnson NL. (eds) Breakthroughs in Statistics. New York, NY: Springer; 1992:569-593. Springer Series in Statistics (SSS).
-
(1992)
Breakthroughs in Statistics
, pp. 569-593
-
-
Efron, B.1
-
14
-
-
0031160755
-
Using regression models for prediction: shrinkage and regression to the mean
-
Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Stat Methods Med Res. 1997;6(2):167-183.
-
(1997)
Stat Methods Med Res
, vol.6
, Issue.2
, pp. 167-183
-
-
Copas, J.B.1
-
15
-
-
84879169822
-
Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data
-
Riley RD, Kauser I, Bland M, et al. Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data. Statist Med. 2013;32(16):2747-2766.
-
(2013)
Statist Med
, vol.32
, Issue.16
, pp. 2747-2766
-
-
Riley, R.D.1
Kauser, I.2
Bland, M.3
-
16
-
-
0034906866
-
Internal validation of predictive models: efficiency of some procedures for logistic regression analysis
-
Steyerberg EW, Harrell FEJ, Borsboom GJ, Eijkemans MJC, Vergouwe Y, Habbema JDF. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54:774-781.
-
(2001)
J Clin Epidemiol
, vol.54
, pp. 774-781
-
-
Steyerberg, E.W.1
Harrell, F.E.J.2
Borsboom, G.J.3
Eijkemans, M.J.C.4
Vergouwe, Y.5
Habbema, J.D.F.6
-
17
-
-
0001216360
-
2 measures based on Wald and likelihood ratio joint significance tests
-
2 measures based on Wald and likelihood ratio joint significance tests. Am Stat. 1990;44(3):250-253.
-
(1990)
Am Stat
, vol.44
, Issue.3
, pp. 250-253
-
-
Magee, L.1
-
20
-
-
85009129532
-
A guide to systematic review and meta-analysis of prediction model performance
-
Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.
-
(2017)
BMJ
, vol.356
-
-
Debray, T.P.1
Damen, J.A.2
Snell, K.I.3
-
21
-
-
85055267920
-
Tufts PACE clinical predictive model registry: update 1990 through 2015
-
Wessler BS, Paulus J, Lundquist CM, et al. Tufts PACE clinical predictive model registry: update 1990 through 2015. Diagn Progn Res. 2017;1(1):20.
-
(2017)
Diagn Progn Res
, vol.1
, Issue.1
, pp. 20
-
-
Wessler, B.S.1
Paulus, J.2
Lundquist, C.M.3
-
22
-
-
77954833031
-
Genetic ancestry in lung-function predictions
-
Kumar R, Seibold MA, Aldrich MC, et al. Genetic ancestry in lung-function predictions. N Engl J Med. 2010;363(4):321-330.
-
(2010)
N Engl J Med
, vol.363
, Issue.4
, pp. 321-330
-
-
Kumar, R.1
Seibold, M.A.2
Aldrich, M.C.3
-
23
-
-
84928929655
-
The number of subjects per variable required in linear regression analyses
-
Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol. 2015;68(6):627-636.
-
(2015)
J Clin Epidemiol
, vol.68
, Issue.6
, pp. 627-636
-
-
Austin, P.C.1
Steyerberg, E.W.2
-
24
-
-
0034402611
-
Determining sample size for accurate estimation of the squared multiple correlation coefficient
-
Algina J, Olejnik S. Determining sample size for accurate estimation of the squared multiple correlation coefficient. Multivar Behav Res. 2000;35(1):119-137.
-
(2000)
Multivar Behav Res
, vol.35
, Issue.1
, pp. 119-137
-
-
Algina, J.1
Olejnik, S.2
-
26
-
-
0000727522
-
Tables of the upper percentage points of the multiple correlation
-
Lee YS. Tables of the upper percentage points of the multiple correlation. Biometrika. 1972;59:175-189.
-
(1972)
Biometrika
, vol.59
, pp. 175-189
-
-
Lee, Y.S.1
-
27
-
-
38349160377
-
Toward using confidence intervals to compare correlations
-
Zou GY. Toward using confidence intervals to compare correlations. Psychol Methods. 2007;12(4):399-413.
-
(2007)
Psychol Methods
, vol.12
, Issue.4
, pp. 399-413
-
-
Zou, G.Y.1
-
28
-
-
34249875735
-
Confidence intervals for standardized effect sizes: theory, application, and implementation
-
Kelley K. Confidence intervals for standardized effect sizes: theory, application, and implementation. J Stat Softw. 2007;20(8):1-24.
-
(2007)
J Stat Softw
, vol.20
, Issue.8
, pp. 1-24
-
-
Kelley, K.1
-
29
-
-
34249876473
-
Methods for the Behavioral, educational, and social sciences: an R package
-
Kelley K. Methods for the Behavioral, educational, and social sciences: an R package. Behav Res Methods. 2007;39(4):979-984.
-
(2007)
Behav Res Methods
, vol.39
, Issue.4
, pp. 979-984
-
-
Kelley, K.1
-
31
-
-
0008679660
-
Increasing statistical power without increasing sample size
-
McClelland GH. Increasing statistical power without increasing sample size. Am Psychol. 2000;55(8):963-964.
-
(2000)
Am Psychol
, vol.55
, Issue.8
, pp. 963-964
-
-
McClelland, G.H.1
-
32
-
-
0032581454
-
A simple method of sample size calculation for linear and logistic regression
-
Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Statist Med. 1998;17(14):1623-1634.
-
(1998)
Statist Med
, vol.17
, Issue.14
, pp. 1623-1634
-
-
Hsieh, F.Y.1
Bloch, D.A.2
Larsen, M.D.3
-
33
-
-
0043109420
-
Sample size for multiple regression: obtaining regression coefficients that are accurate, not simply significant
-
Kelley K, Maxwell SE. Sample size for multiple regression: obtaining regression coefficients that are accurate, not simply significant. Psychol Methods. 2003;8(3):305-321.
-
(2003)
Psychol Methods
, vol.8
, Issue.3
, pp. 305-321
-
-
Kelley, K.1
Maxwell, S.E.2
-
34
-
-
37349102359
-
Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach
-
Kelley K. Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach. Behav Res Methods. 2007;39(4):755-766.
-
(2007)
Behav Res Methods
, vol.39
, Issue.4
, pp. 755-766
-
-
Kelley, K.1
-
35
-
-
41549115181
-
Sample size planning for statistical power and accuracy in parameter estimation
-
Maxwell SE, Kelley K, Rausch JR. Sample size planning for statistical power and accuracy in parameter estimation. Annu Rev Psychol. 2008;59:537-563.
-
(2008)
Annu Rev Psychol
, vol.59
, pp. 537-563
-
-
Maxwell, S.E.1
Kelley, K.2
Rausch, J.R.3
-
36
-
-
84962074698
-
Adequate sample size for developing prediction models is not simply related to events per variable
-
Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol. 2016;76:175-182.
-
(2016)
J Clin Epidemiol
, vol.76
, pp. 175-182
-
-
Ogundimu, E.O.1
Altman, D.G.2
Collins, G.S.3
-
37
-
-
42949108640
-
Sample sizes when using multiple linear regression for prediction
-
Knofczynski GT, Mundfrom D. Sample sizes when using multiple linear regression for prediction. Educ Psychol Meas. 2008;68(3):431-442.
-
(2008)
Educ Psychol Meas
, vol.68
, Issue.3
, pp. 431-442
-
-
Knofczynski, G.T.1
Mundfrom, D.2
|