-
2
-
-
84874505367
-
Prognosis research strategy (PROGRESS) 3: Prognostic model research
-
1001381
-
Steyerberg EW, Moons KGM, van der Windt DA, et al. PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med 2013;10:e1001381. doi:10.1371/journal. pmed.1001381.
-
(2013)
PLoS Med
, vol.10
-
-
Steyerberg, E.W.1
Moons, K.G.M.2
Van Der Windt, D.A.3
-
3
-
-
84857667538
-
Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews [correction in: PLoS One 2012;7(7): Doi/10.1371/annotation/96bdb520-d704-45f0-a143-43a48552952e]
-
Geersing GJ, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M, Moons KG. Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews [correction in: PLoS One 2012;7(7): doi/10.1371/annotation/96bdb520-d704-45f0-a143-43a48552952e]. PLoS One 2012;7:e32844. doi:10.1371/journal. pone.0032844.
-
(2012)
PLoS One
, vol.7
-
-
Geersing, G.J.1
Bouwmeester, W.2
Zuithoff, P.3
Spijker, R.4
Leeflang, M.5
Moons, K.G.6
-
4
-
-
14544293158
-
Developing optimal search strategies for detecting sound clinical prediction studies in MEDLINE
-
Wong SS, Wilczynski NL, Haynes RB, Ramkissoonsingh R. Hedges Team. Developing optimal search strategies for detecting sound clinical prediction studies in MEDLINE. AMIA Annu Symp Proc 2003:728-32.
-
(2003)
AMIA Annu Symp Proc
, pp. 728-732
-
-
Wong, S.S.1
Wilczynski, N.L.2
Haynes, R.B.3
Ramkissoonsingh, R.4
-
5
-
-
0034959579
-
Searching for clinical prediction rules in MEDLINE
-
Ingui BJ, Rogers MA. Searching for clinical prediction rules in MEDLINE. J Am Med Inform Assoc 2001;8:391-7. doi:10.1136/ jamia.2001.0080391.
-
(2001)
J Am Med Inform Assoc
, vol.8
, pp. 391-397
-
-
Ingui, B.J.1
Rogers, M.A.2
-
6
-
-
84908330513
-
Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist
-
Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med 2014;11:e1001744. doi:10.1371/journal.pmed.1001744.
-
(2014)
PLoS Med
, vol.11
-
-
Moons, K.G.M.1
De Groot, J.A.H.2
Bouwmeester, W.3
-
8
-
-
84923527988
-
A new framework to enhance the interpretation of external validation studies of clinical prediction models
-
Debray TPA, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol 2015;68:279-89. doi:10.1016/j.jclinepi.2014.06.018.
-
(2015)
J Clin Epidemiol
, vol.68
, pp. 279-289
-
-
Debray, T.P.A.1
Vergouwe, Y.2
Koffijberg, H.3
Nieboer, D.4
Steyerberg, E.W.5
Moons, K.G.6
-
9
-
-
84952630758
-
Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
-
Snell KI, Hua H, Debray TP, et al. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model. J Clin Epidemiol 2016;69:40-50. doi:10.1016/j.jclinepi.2015.05.009.
-
(2016)
J Clin Epidemiol
, vol.69
, pp. 40-50
-
-
Snell, K.I.1
Hua, H.2
Debray, T.P.3
-
10
-
-
0034728356
-
What do we mean by validating a prognostic model?
-
Altman DG, Royston P. What do we mean by validating a prognostic model?Stat Med 2000;19:453-73. doi:10.1002/ (SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5.
-
(2000)
Stat Med
, vol.19
, pp. 453-473
-
-
Altman, D.G.1
Royston, P.2
-
11
-
-
0033574245
-
Assessing the generalizability of prognostic information
-
Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med 1999;130:515-24. doi:10.7326/0003-4819-130-6-199903160-00016.
-
(1999)
Ann Intern Med
, vol.130
, pp. 515-524
-
-
Justice, A.C.1
Covinsky, K.E.2
Berlin, J.A.3
-
12
-
-
84872797683
-
A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods
-
Collins GS, Omar O, Shanyinde M, Yu LM. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. J Clin Epidemiol 2013;66:268-77. doi:10.1016/j.jclinepi.2012.06.020.
-
(2013)
J Clin Epidemiol
, vol.66
, pp. 268-277
-
-
Collins, G.S.1
Omar, O.2
Shanyinde, M.3
Yu, L.M.4
-
13
-
-
84862336130
-
Performance of the original EuroSCORE
-
Siregar S, Groenwold RHH, de Heer F, Bots ML, van der Graaf Y, van Herwerden LA. Performance of the original EuroSCORE. Eur J Cardiothorac Surg 2012;41:746-54. doi:10.1093/ejcts/ezr285.
-
(2012)
Eur J Cardiothorac Surg
, vol.41
, pp. 746-754
-
-
Siregar, S.1
Groenwold, R.H.H.2
De Heer, F.3
Bots, M.L.4
Van Der Graaf, Y.5
Van Herwerden, L.A.6
-
15
-
-
72249113124
-
Assessment of claims of improved prediction beyond the Framingham risk score
-
Tzoulaki I, Liberopoulos G, Ioannidis JPA. Assessment of claims of improved prediction beyond the Framingham risk score. JAMA 2009;302:2345-52. doi:10.1001/jama.2009.1757.
-
(2009)
JAMA
, vol.302
, pp. 2345-2352
-
-
Tzoulaki, I.1
Liberopoulos, G.2
Ioannidis, J.P.A.3
-
16
-
-
34247346589
-
Prediction of first coronary events with the Framingham score: A systematic review
-
731, e1-8
-
Eichler K, Puhan MA, Steurer J, Bachmann LM. Prediction of first coronary events with the Framingham score: a systematic review. Am Heart J 2007;153:722-31, 731.e1-8. doi:10.1016/j.ahj.2007.02.027.
-
(2007)
Am Heart J
, vol.153
, pp. 722-731
-
-
Eichler, K.1
Puhan, M.A.2
Steurer, J.3
Bachmann, L.M.4
-
17
-
-
33751264383
-
Systematic review of prognostic models in traumatic brain injury
-
Perel P, Edwards P, Wentz R, Roberts I. Systematic review of prognostic models in traumatic brain injury. BMC Med Inform Decis Mak 2006;6:38. doi:10.1186/1472-6947-6-38.
-
(2006)
BMC Med Inform Decis Mak
, vol.6
, pp. 38
-
-
Perel, P.1
Edwards, P.2
Wentz, R.3
Roberts, I.4
-
18
-
-
84899459258
-
External validation of multivariable prediction models: A systematic review of methodological conduct and reporting
-
Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol 2014;14:40. doi:10.1186/1471-2288-14-40.
-
(2014)
BMC Med Res Methodol
, vol.14
, pp. 40
-
-
Collins, G.S.1
De Groot, J.A.2
Dutton, S.3
-
19
-
-
84976645528
-
External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges
-
Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ 2016;353:i3140. doi:10.1136/bmj.i3140.
-
(2016)
BMJ
, vol.353
, pp. i3140
-
-
Riley, R.D.1
Ensor, J.2
Snell, K.I.3
-
20
-
-
84905366280
-
Improving the transparency of prognosis research: The role of reporting, data sharing, registration, and protocols
-
Peat G, Riley RD, Croft P, et al. PROGRESS Group. Improving the transparency of prognosis research: the role of reporting, data sharing, registration, and protocols. PLoS Med 2014;11:e1001671. doi:10.1371/journal.pmed.1001671.
-
(2014)
PLoS Med
, vol.11
-
-
Peat, G.1
Riley, R.D.2
Croft, P.3
-
21
-
-
84926144235
-
Use of GRADE for assessment of evidence about prognosis: Rating confidence in estimates of event rates in broad categories of patients
-
Iorio A, Spencer FA, Falavigna M, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ 2015;350:h870. doi:10.1136/bmj.h870.
-
(2015)
BMJ
, vol.350
, pp. h870
-
-
Iorio, A.1
Spencer, F.A.2
Falavigna, M.3
-
22
-
-
77958090625
-
External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coefficients
-
Vergouwe Y, Moons KGM, Steyerberg EW. External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol 2010;172:971-80. doi:10.1093/aje/kwq223.
-
(2010)
Am J Epidemiol
, vol.172
, pp. 971-980
-
-
Vergouwe, Y.1
Moons, K.G.M.2
Steyerberg, E.W.3
-
23
-
-
84937548548
-
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration
-
Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73. doi:10.7326/M14-0698.
-
(2015)
Ann Intern Med
, vol.162
, pp. W1-W73
-
-
Moons, K.G.M.1
Altman, D.G.2
Reitsma, J.B.3
-
24
-
-
84973349401
-
A new concordance measure for risk prediction models in external validation settings
-
van Klaveren D, Gönen M, Steyerberg EW, Vergouwe Y. A new concordance measure for risk prediction models in external validation settings. Stat Med 2016;35:4136-52. doi:10.1002/sim.6997.
-
(2016)
Stat Med
, vol.35
, pp. 4136-4152
-
-
Van Klaveren, D.1
Gönen, M.2
Steyerberg, E.W.3
Vergouwe, Y.4
-
25
-
-
85009090516
-
-
Higgins JPT, Green S. Combining Groups. http://handbook.cochrane. org/chapter-7/7-7-3-8-combining-groups.htm, 2011.
-
(2011)
-
-
Higgins, J.P.T.1
Green, S.2
-
26
-
-
21544449115
-
Estimating the mean and variance from the median, range, and the size of a sample
-
Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005;5:13. doi:10.1186/1471-2288-5-13.
-
(2005)
BMC Med Res Methodol
, vol.5
, pp. 13
-
-
Hozo, S.P.1
Djulbegovic, B.2
Hozo, I.3
-
27
-
-
84861556816
-
Reporting and methods in clinical prediction research: A systematic review
-
Bouwmeester W, Zuithoff NPA, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med 2012;9:1-12. doi:10.1371/journal.pmed.1001221.
-
(2012)
PLoS Med
, vol.9
, pp. 1-12
-
-
Bouwmeester, W.1
Zuithoff, N.P.A.2
Mallett, S.3
-
28
-
-
85020744103
-
Predictive accuracy of novel risk factors and markers: A simulation study of the sensitivity of different performance measures for the Cox proportional hazards regression model
-
0962280214567141
-
Austin PC, Pencinca MJ, Steyerberg EW. Predictive accuracy of novel risk factors and markers: A simulation study of the sensitivity of different performance measures for the Cox proportional hazards regression model. Stat Methods Med Res 2015;0962280214567141.
-
(2015)
Stat Methods Med Res
-
-
Austin, P.C.1
Pencinca, M.J.2
Steyerberg, E.W.3
-
29
-
-
84883365130
-
Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring
-
Blanche P, Dartigues JF, Jacqmin-Gadda H. Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring. Biom J 2013;55:687-704. doi:10.1002/bimj.201200045.
-
(2013)
Biom J
, vol.55
, pp. 687-704
-
-
Blanche, P.1
Dartigues, J.F.2
Jacqmin-Gadda, H.3
-
30
-
-
84944065233
-
Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data
-
Jinks RC, Royston P, Parmar MKB. Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data. BMC Med Res Methodol 2015;15:82. doi:10.1186/s12874-015-0078-y.
-
(2015)
BMC Med Res Methodol
, vol.15
, pp. 82
-
-
Jinks, R.C.1
Royston, P.2
Parmar, M.K.B.3
-
31
-
-
84896692640
-
Emerging risk factors collaboration. Assessing risk prediction models using individual participant data from multiple studies
-
Pennells L, Kaptoge S, White IR, Thompson SG, Wood AM. Emerging Risk Factors Collaboration. Assessing risk prediction models using individual participant data from multiple studies. Am J Epidemiol 2014;179:621-32. doi:10.1093/aje/kwt298.
-
(2014)
Am J Epidemiol
, vol.179
, pp. 621-632
-
-
Pennells, L.1
Kaptoge, S.2
White, I.R.3
Thompson, S.G.4
Wood, A.M.5
-
32
-
-
79955544813
-
Interpretation of random effects meta-analyses
-
Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011;342:d549. doi:10.1136/bmj.d549.
-
(2011)
BMJ
, vol.342
, pp. d549
-
-
Riley, R.D.1
Higgins, J.P.T.2
Deeks, J.J.3
-
35
-
-
43949083703
-
Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test
-
Gengsheng Qin, Hotilovac L. Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test. Stat Methods Med Res 2008;17:207-21. doi:10.1177/0962280207087173.
-
(2008)
Stat Methods Med Res
, vol.17
, pp. 207-221
-
-
Qin, G.1
Hotilovac, L.2
-
36
-
-
84899478410
-
The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method
-
IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol 2014;14:25. doi:10.1186/1471-2288-14-25.
-
(2014)
BMC Med Res Methodol
, vol.14
, pp. 25
-
-
IntHout, J.1
Ioannidis, J.P.2
Borm, G.F.3
-
37
-
-
84988478557
-
Random-effects meta-analysis of inconsistent effects: A time for change
-
Cornell JE, Mulrow CD, Localio R, et al. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med 2014;160:267-70. doi:10.7326/M13-2886.
-
(2014)
Ann Intern Med
, vol.160
, pp. 267-270
-
-
Cornell, J.E.1
Mulrow, C.D.2
Localio, R.3
-
38
-
-
84953776489
-
Design characteristics influence performance of clinical prediction rules in validation: A meta-epidemiological study
-
Ban JW, Emparanza JI, Urreta I, Burls A. Design Characteristics Influence Performance of Clinical Prediction Rules in Validation: A Meta-Epidemiological Study. PLoS One 2016;11:e0145779. doi:10.1371/journal.pone.0145779.
-
(2016)
PLoS One
, vol.11
-
-
Ban, J.W.1
Emparanza, J.I.2
Urreta, I.3
Burls, A.4
-
40
-
-
0037083255
-
Individual patient-versus group-level data meta-regressions for the investigation of treatment effect modifiers: Ecological bias rears its ugly head
-
Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI. Anti-Lymphocyte Antibody Induction Therapy Study Group. Individual patient-versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med 2002;21:371-87. doi:10.1002/sim.1023.
-
(2002)
Stat Med
, vol.21
, pp. 371-387
-
-
Berlin, J.A.1
Santanna, J.2
Schmid, C.H.3
Szczech, L.A.4
Feldman, H.I.5
-
41
-
-
68549101842
-
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration
-
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700. doi:10.1136/bmj.b2700.
-
(2009)
BMJ
, vol.339
, pp. b2700
-
-
Liberati, A.1
Altman, D.G.2
Tetzlaff, J.3
-
42
-
-
84928753669
-
Preferred reporting items for a systematic review and meta-analysis of individual participant data: The PRISMA-IPD Statement
-
Stewart LA, Clarke M, Rovers M, et al. PRISMA-IPD Development Group. Preferred reporting items for a systematic review and meta-analysis of individual participant data: The PRISMA-IPD Statement. JAMA 2015;313:1657-65. doi:10.1001/jama.2015.3656.
-
(2015)
JAMA
, vol.313
, pp. 1657-1665
-
-
Stewart, L.A.1
Clarke, M.2
Rovers, M.3
-
43
-
-
84923923813
-
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement
-
Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med 2015;162:55-63. doi:10.7326/M14-0697.
-
(2015)
Ann Intern Med
, vol.162
, pp. 55-63
-
-
Collins, G.S.1
Reitsma, J.B.2
Altman, D.G.3
Moons, K.G.4
-
44
-
-
84946072388
-
Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use
-
Debray TPA, Riley RD, Rovers MM, Reitsma JB, Moons KG. Cochrane IPD Meta-analysis Methods group. Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med 2015;12:e1001886. doi:10.1371/ journal.pmed.1001886.
-
(2015)
PLoS Med
, vol.12
-
-
Debray, T.P.A.1
Riley, R.D.2
Rovers, M.M.3
Reitsma, J.B.4
Moons, K.G.5
-
45
-
-
0034927232
-
Bayesian methods in meta-analysis and evidence synthesis
-
Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 2001;10:277-303. doi:10.1191/096228001678227794.
-
(2001)
Stat Methods Med Res
, vol.10
, pp. 277-303
-
-
Sutton, A.J.1
Abrams, K.R.2
-
46
-
-
84959328652
-
Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests
-
Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 2016;352:i6. doi:10.1136/bmj.i6
-
(2016)
BMJ
, vol.352
, pp. i6
-
-
Vickers, A.J.1
Van Calster, B.2
Steyerberg, E.W.3
|