메뉴 건너뛰기




Volumn 356, Issue , 2017, Pages

A guide to systematic review and meta-analysis of prediction model performance

Author keywords

[No Author keywords available]

Indexed keywords

CALIBRATION; CASE STUDY; CORONARY ARTERY BYPASS GRAFT; DATA EXTRACTION; EUROSCORE; EVIDENCE BASED MEDICINE; HIGH RISK PATIENT; MEDICAL RESEARCH; META ANALYSIS (TOPIC); PREDICTION; PRIORITY JOURNAL; QUANTITATIVE STUDY; REVIEW; RISK ASSESSMENT; SENSITIVITY ANALYSIS; SURGICAL MORTALITY; SURVIVAL RATE; SYSTEMATIC REVIEW (TOPIC); VALIDATION PROCESS; DECISION SUPPORT SYSTEM; HUMAN; LITERATURE; MORTALITY; PROCEDURES; STANDARDS; VALIDATION STUDY;

EID: 85009129532     PISSN: 09598146     EISSN: 17561833     Source Type: Journal    
DOI: 10.1136/bmj.i6460     Document Type: Review
Times cited : (380)

References (46)
  • 2
    • 84874505367 scopus 로고    scopus 로고
    • Prognosis research strategy (PROGRESS) 3: Prognostic model research
    • 1001381
    • Steyerberg EW, Moons KGM, van der Windt DA, et al. PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med 2013;10:e1001381. doi:10.1371/journal. pmed.1001381.
    • (2013) PLoS Med , vol.10
    • Steyerberg, E.W.1    Moons, K.G.M.2    Van Der Windt, D.A.3
  • 3
    • 84857667538 scopus 로고    scopus 로고
    • Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews [correction in: PLoS One 2012;7(7): Doi/10.1371/annotation/96bdb520-d704-45f0-a143-43a48552952e]
    • Geersing GJ, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M, Moons KG. Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews [correction in: PLoS One 2012;7(7): doi/10.1371/annotation/96bdb520-d704-45f0-a143-43a48552952e]. PLoS One 2012;7:e32844. doi:10.1371/journal. pone.0032844.
    • (2012) PLoS One , vol.7
    • Geersing, G.J.1    Bouwmeester, W.2    Zuithoff, P.3    Spijker, R.4    Leeflang, M.5    Moons, K.G.6
  • 4
    • 14544293158 scopus 로고    scopus 로고
    • Developing optimal search strategies for detecting sound clinical prediction studies in MEDLINE
    • Wong SS, Wilczynski NL, Haynes RB, Ramkissoonsingh R. Hedges Team. Developing optimal search strategies for detecting sound clinical prediction studies in MEDLINE. AMIA Annu Symp Proc 2003:728-32.
    • (2003) AMIA Annu Symp Proc , pp. 728-732
    • Wong, S.S.1    Wilczynski, N.L.2    Haynes, R.B.3    Ramkissoonsingh, R.4
  • 5
    • 0034959579 scopus 로고    scopus 로고
    • Searching for clinical prediction rules in MEDLINE
    • Ingui BJ, Rogers MA. Searching for clinical prediction rules in MEDLINE. J Am Med Inform Assoc 2001;8:391-7. doi:10.1136/ jamia.2001.0080391.
    • (2001) J Am Med Inform Assoc , vol.8 , pp. 391-397
    • Ingui, B.J.1    Rogers, M.A.2
  • 6
    • 84908330513 scopus 로고    scopus 로고
    • Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist
    • Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med 2014;11:e1001744. doi:10.1371/journal.pmed.1001744.
    • (2014) PLoS Med , vol.11
    • Moons, K.G.M.1    De Groot, J.A.H.2    Bouwmeester, W.3
  • 8
    • 84923527988 scopus 로고    scopus 로고
    • A new framework to enhance the interpretation of external validation studies of clinical prediction models
    • Debray TPA, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol 2015;68:279-89. doi:10.1016/j.jclinepi.2014.06.018.
    • (2015) J Clin Epidemiol , vol.68 , pp. 279-289
    • Debray, T.P.A.1    Vergouwe, Y.2    Koffijberg, H.3    Nieboer, D.4    Steyerberg, E.W.5    Moons, K.G.6
  • 9
    • 84952630758 scopus 로고    scopus 로고
    • Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
    • Snell KI, Hua H, Debray TP, et al. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model. J Clin Epidemiol 2016;69:40-50. doi:10.1016/j.jclinepi.2015.05.009.
    • (2016) J Clin Epidemiol , vol.69 , pp. 40-50
    • Snell, K.I.1    Hua, H.2    Debray, T.P.3
  • 10
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman DG, Royston P. What do we mean by validating a prognostic model?Stat Med 2000;19:453-73. doi:10.1002/ (SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5.
    • (2000) Stat Med , vol.19 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 11
    • 0033574245 scopus 로고    scopus 로고
    • Assessing the generalizability of prognostic information
    • Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med 1999;130:515-24. doi:10.7326/0003-4819-130-6-199903160-00016.
    • (1999) Ann Intern Med , vol.130 , pp. 515-524
    • Justice, A.C.1    Covinsky, K.E.2    Berlin, J.A.3
  • 12
    • 84872797683 scopus 로고    scopus 로고
    • A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods
    • Collins GS, Omar O, Shanyinde M, Yu LM. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. J Clin Epidemiol 2013;66:268-77. doi:10.1016/j.jclinepi.2012.06.020.
    • (2013) J Clin Epidemiol , vol.66 , pp. 268-277
    • Collins, G.S.1    Omar, O.2    Shanyinde, M.3    Yu, L.M.4
  • 15
    • 72249113124 scopus 로고    scopus 로고
    • Assessment of claims of improved prediction beyond the Framingham risk score
    • Tzoulaki I, Liberopoulos G, Ioannidis JPA. Assessment of claims of improved prediction beyond the Framingham risk score. JAMA 2009;302:2345-52. doi:10.1001/jama.2009.1757.
    • (2009) JAMA , vol.302 , pp. 2345-2352
    • Tzoulaki, I.1    Liberopoulos, G.2    Ioannidis, J.P.A.3
  • 16
    • 34247346589 scopus 로고    scopus 로고
    • Prediction of first coronary events with the Framingham score: A systematic review
    • 731, e1-8
    • Eichler K, Puhan MA, Steurer J, Bachmann LM. Prediction of first coronary events with the Framingham score: a systematic review. Am Heart J 2007;153:722-31, 731.e1-8. doi:10.1016/j.ahj.2007.02.027.
    • (2007) Am Heart J , vol.153 , pp. 722-731
    • Eichler, K.1    Puhan, M.A.2    Steurer, J.3    Bachmann, L.M.4
  • 17
    • 33751264383 scopus 로고    scopus 로고
    • Systematic review of prognostic models in traumatic brain injury
    • Perel P, Edwards P, Wentz R, Roberts I. Systematic review of prognostic models in traumatic brain injury. BMC Med Inform Decis Mak 2006;6:38. doi:10.1186/1472-6947-6-38.
    • (2006) BMC Med Inform Decis Mak , vol.6 , pp. 38
    • Perel, P.1    Edwards, P.2    Wentz, R.3    Roberts, I.4
  • 18
    • 84899459258 scopus 로고    scopus 로고
    • External validation of multivariable prediction models: A systematic review of methodological conduct and reporting
    • Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol 2014;14:40. doi:10.1186/1471-2288-14-40.
    • (2014) BMC Med Res Methodol , vol.14 , pp. 40
    • Collins, G.S.1    De Groot, J.A.2    Dutton, S.3
  • 19
    • 84976645528 scopus 로고    scopus 로고
    • External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges
    • Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ 2016;353:i3140. doi:10.1136/bmj.i3140.
    • (2016) BMJ , vol.353 , pp. i3140
    • Riley, R.D.1    Ensor, J.2    Snell, K.I.3
  • 20
    • 84905366280 scopus 로고    scopus 로고
    • Improving the transparency of prognosis research: The role of reporting, data sharing, registration, and protocols
    • Peat G, Riley RD, Croft P, et al. PROGRESS Group. Improving the transparency of prognosis research: the role of reporting, data sharing, registration, and protocols. PLoS Med 2014;11:e1001671. doi:10.1371/journal.pmed.1001671.
    • (2014) PLoS Med , vol.11
    • Peat, G.1    Riley, R.D.2    Croft, P.3
  • 21
    • 84926144235 scopus 로고    scopus 로고
    • Use of GRADE for assessment of evidence about prognosis: Rating confidence in estimates of event rates in broad categories of patients
    • Iorio A, Spencer FA, Falavigna M, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ 2015;350:h870. doi:10.1136/bmj.h870.
    • (2015) BMJ , vol.350 , pp. h870
    • Iorio, A.1    Spencer, F.A.2    Falavigna, M.3
  • 22
    • 77958090625 scopus 로고    scopus 로고
    • External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coefficients
    • Vergouwe Y, Moons KGM, Steyerberg EW. External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol 2010;172:971-80. doi:10.1093/aje/kwq223.
    • (2010) Am J Epidemiol , vol.172 , pp. 971-980
    • Vergouwe, Y.1    Moons, K.G.M.2    Steyerberg, E.W.3
  • 23
    • 84937548548 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration
    • Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73. doi:10.7326/M14-0698.
    • (2015) Ann Intern Med , vol.162 , pp. W1-W73
    • Moons, K.G.M.1    Altman, D.G.2    Reitsma, J.B.3
  • 24
    • 84973349401 scopus 로고    scopus 로고
    • A new concordance measure for risk prediction models in external validation settings
    • van Klaveren D, Gönen M, Steyerberg EW, Vergouwe Y. A new concordance measure for risk prediction models in external validation settings. Stat Med 2016;35:4136-52. doi:10.1002/sim.6997.
    • (2016) Stat Med , vol.35 , pp. 4136-4152
    • Van Klaveren, D.1    Gönen, M.2    Steyerberg, E.W.3    Vergouwe, Y.4
  • 25
    • 85009090516 scopus 로고    scopus 로고
    • Higgins JPT, Green S. Combining Groups. http://handbook.cochrane. org/chapter-7/7-7-3-8-combining-groups.htm, 2011.
    • (2011)
    • Higgins, J.P.T.1    Green, S.2
  • 26
    • 21544449115 scopus 로고    scopus 로고
    • Estimating the mean and variance from the median, range, and the size of a sample
    • Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005;5:13. doi:10.1186/1471-2288-5-13.
    • (2005) BMC Med Res Methodol , vol.5 , pp. 13
    • Hozo, S.P.1    Djulbegovic, B.2    Hozo, I.3
  • 27
    • 84861556816 scopus 로고    scopus 로고
    • Reporting and methods in clinical prediction research: A systematic review
    • Bouwmeester W, Zuithoff NPA, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med 2012;9:1-12. doi:10.1371/journal.pmed.1001221.
    • (2012) PLoS Med , vol.9 , pp. 1-12
    • Bouwmeester, W.1    Zuithoff, N.P.A.2    Mallett, S.3
  • 28
    • 85020744103 scopus 로고    scopus 로고
    • Predictive accuracy of novel risk factors and markers: A simulation study of the sensitivity of different performance measures for the Cox proportional hazards regression model
    • 0962280214567141
    • Austin PC, Pencinca MJ, Steyerberg EW. Predictive accuracy of novel risk factors and markers: A simulation study of the sensitivity of different performance measures for the Cox proportional hazards regression model. Stat Methods Med Res 2015;0962280214567141.
    • (2015) Stat Methods Med Res
    • Austin, P.C.1    Pencinca, M.J.2    Steyerberg, E.W.3
  • 29
    • 84883365130 scopus 로고    scopus 로고
    • Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring
    • Blanche P, Dartigues JF, Jacqmin-Gadda H. Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring. Biom J 2013;55:687-704. doi:10.1002/bimj.201200045.
    • (2013) Biom J , vol.55 , pp. 687-704
    • Blanche, P.1    Dartigues, J.F.2    Jacqmin-Gadda, H.3
  • 30
    • 84944065233 scopus 로고    scopus 로고
    • Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data
    • Jinks RC, Royston P, Parmar MKB. Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data. BMC Med Res Methodol 2015;15:82. doi:10.1186/s12874-015-0078-y.
    • (2015) BMC Med Res Methodol , vol.15 , pp. 82
    • Jinks, R.C.1    Royston, P.2    Parmar, M.K.B.3
  • 31
    • 84896692640 scopus 로고    scopus 로고
    • Emerging risk factors collaboration. Assessing risk prediction models using individual participant data from multiple studies
    • Pennells L, Kaptoge S, White IR, Thompson SG, Wood AM. Emerging Risk Factors Collaboration. Assessing risk prediction models using individual participant data from multiple studies. Am J Epidemiol 2014;179:621-32. doi:10.1093/aje/kwt298.
    • (2014) Am J Epidemiol , vol.179 , pp. 621-632
    • Pennells, L.1    Kaptoge, S.2    White, I.R.3    Thompson, S.G.4    Wood, A.M.5
  • 32
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011;342:d549. doi:10.1136/bmj.d549.
    • (2011) BMJ , vol.342 , pp. d549
    • Riley, R.D.1    Higgins, J.P.T.2    Deeks, J.J.3
  • 35
    • 43949083703 scopus 로고    scopus 로고
    • Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test
    • Gengsheng Qin, Hotilovac L. Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test. Stat Methods Med Res 2008;17:207-21. doi:10.1177/0962280207087173.
    • (2008) Stat Methods Med Res , vol.17 , pp. 207-221
    • Qin, G.1    Hotilovac, L.2
  • 36
    • 84899478410 scopus 로고    scopus 로고
    • The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method
    • IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol 2014;14:25. doi:10.1186/1471-2288-14-25.
    • (2014) BMC Med Res Methodol , vol.14 , pp. 25
    • IntHout, J.1    Ioannidis, J.P.2    Borm, G.F.3
  • 37
    • 84988478557 scopus 로고    scopus 로고
    • Random-effects meta-analysis of inconsistent effects: A time for change
    • Cornell JE, Mulrow CD, Localio R, et al. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med 2014;160:267-70. doi:10.7326/M13-2886.
    • (2014) Ann Intern Med , vol.160 , pp. 267-270
    • Cornell, J.E.1    Mulrow, C.D.2    Localio, R.3
  • 38
    • 84953776489 scopus 로고    scopus 로고
    • Design characteristics influence performance of clinical prediction rules in validation: A meta-epidemiological study
    • Ban JW, Emparanza JI, Urreta I, Burls A. Design Characteristics Influence Performance of Clinical Prediction Rules in Validation: A Meta-Epidemiological Study. PLoS One 2016;11:e0145779. doi:10.1371/journal.pone.0145779.
    • (2016) PLoS One , vol.11
    • Ban, J.W.1    Emparanza, J.I.2    Urreta, I.3    Burls, A.4
  • 40
    • 0037083255 scopus 로고    scopus 로고
    • Individual patient-versus group-level data meta-regressions for the investigation of treatment effect modifiers: Ecological bias rears its ugly head
    • Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI. Anti-Lymphocyte Antibody Induction Therapy Study Group. Individual patient-versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med 2002;21:371-87. doi:10.1002/sim.1023.
    • (2002) Stat Med , vol.21 , pp. 371-387
    • Berlin, J.A.1    Santanna, J.2    Schmid, C.H.3    Szczech, L.A.4    Feldman, H.I.5
  • 41
    • 68549101842 scopus 로고    scopus 로고
    • The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration
    • Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700. doi:10.1136/bmj.b2700.
    • (2009) BMJ , vol.339 , pp. b2700
    • Liberati, A.1    Altman, D.G.2    Tetzlaff, J.3
  • 42
    • 84928753669 scopus 로고    scopus 로고
    • Preferred reporting items for a systematic review and meta-analysis of individual participant data: The PRISMA-IPD Statement
    • Stewart LA, Clarke M, Rovers M, et al. PRISMA-IPD Development Group. Preferred reporting items for a systematic review and meta-analysis of individual participant data: The PRISMA-IPD Statement. JAMA 2015;313:1657-65. doi:10.1001/jama.2015.3656.
    • (2015) JAMA , vol.313 , pp. 1657-1665
    • Stewart, L.A.1    Clarke, M.2    Rovers, M.3
  • 43
    • 84923923813 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement
    • Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med 2015;162:55-63. doi:10.7326/M14-0697.
    • (2015) Ann Intern Med , vol.162 , pp. 55-63
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.4
  • 44
    • 84946072388 scopus 로고    scopus 로고
    • Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use
    • Debray TPA, Riley RD, Rovers MM, Reitsma JB, Moons KG. Cochrane IPD Meta-analysis Methods group. Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med 2015;12:e1001886. doi:10.1371/ journal.pmed.1001886.
    • (2015) PLoS Med , vol.12
    • Debray, T.P.A.1    Riley, R.D.2    Rovers, M.M.3    Reitsma, J.B.4    Moons, K.G.5
  • 45
    • 0034927232 scopus 로고    scopus 로고
    • Bayesian methods in meta-analysis and evidence synthesis
    • Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 2001;10:277-303. doi:10.1191/096228001678227794.
    • (2001) Stat Methods Med Res , vol.10 , pp. 277-303
    • Sutton, A.J.1    Abrams, K.R.2
  • 46
    • 84959328652 scopus 로고    scopus 로고
    • Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests
    • Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 2016;352:i6. doi:10.1136/bmj.i6
    • (2016) BMJ , vol.352 , pp. i6
    • Vickers, A.J.1    Van Calster, B.2    Steyerberg, E.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.