메뉴 건너뛰기




Volumn 38, Issue 7, 2019, Pages 1276-1296

Correction to: Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes (Statistics in Medicine, (2019), 38, 7, (1276-1296), 10.1002/sim.7992);Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes

Author keywords

binary and time to event outcomes; logistic and Cox regression; multivariable prediction model; pseudo R squared; sample size; shrinkage

Indexed keywords

ARTICLE; CHAGAS DISEASE; CRITERION VARIABLE; HUMAN; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; PREDICTION; PREDICTIVE VALUE; PREDICTOR VARIABLE; PROGNOSIS; RISK ASSESSMENT; SAMPLE SIZE; STATISTICAL MODEL; VENOUS THROMBOEMBOLISM; COMPUTER SIMULATION; MULTIVARIATE ANALYSIS; REGRESSION ANALYSIS; TIME;

EID: 85055292302     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.8409     Document Type: Erratum
Times cited : (518)

References (60)
  • 2
    • 67650045441 scopus 로고    scopus 로고
    • Prognosis and prognostic research: developing a prognostic model
    • Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. Br Med J. 2009;338:1373-1377.https://doi.org/10.1136/bmj.b604
    • (2009) Br Med J , vol.338 , pp. 1373-1377
    • Royston, P.1    Moons, K.G.2    Altman, D.G.3    Vergouwe, Y.4
  • 3
    • 84874505367 scopus 로고    scopus 로고
    • Prognosis research strategy (PROGRESS) 3: prognostic model research
    • Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.
    • (2013) PLoS Med , vol.10 , Issue.2
    • Steyerberg, E.W.1    Moons, K.G.2    van der Windt, D.A.3
  • 4
    • 0034063321 scopus 로고    scopus 로고
    • Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer
    • Wells PS, Anderson DR, Rodger M, et al. Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer. Thromb Haemost. 2000;83(3):416-420.
    • (2000) Thromb Haemost , vol.83 , Issue.3 , pp. 416-420
    • Wells, P.S.1    Anderson, D.R.2    Rodger, M.3
  • 5
    • 0031588519 scopus 로고    scopus 로고
    • Value of assessment of pretest probability of deep-vein thrombosis in clinical management
    • Wells PS, Anderson DR, Bormanis J, et al. Value of assessment of pretest probability of deep-vein thrombosis in clinical management. Lancet. 1997;350(9094):1795-1798.
    • (1997) Lancet , vol.350 , Issue.9094 , pp. 1795-1798
    • Wells, P.S.1    Anderson, D.R.2    Bormanis, J.3
  • 7
    • 47149088261 scopus 로고    scopus 로고
    • Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2
    • Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475-1482.
    • (2008) BMJ , vol.336 , Issue.7659 , pp. 1475-1482
    • Hippisley-Cox, J.1    Coupland, C.2    Vinogradova, Y.3
  • 8
    • 0020031067 scopus 로고
    • A prognostic index in primary breast cancer
    • Haybittle JL, Blamey RW, Elston CW, et al. A prognostic index in primary breast cancer. Br J Cancer. 1982;45(3):361-366.
    • (1982) Br J Cancer , vol.45 , Issue.3 , pp. 361-366
    • Haybittle, J.L.1    Blamey, R.W.2    Elston, C.W.3
  • 10
    • 85055265422 scopus 로고    scopus 로고
    • Minimum sample size for developing a multivariable prediction model: PART I - continuous outcomes
    • Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART I - continuous outcomes. Statist Med. 2018. https://doi.org/10.1002/sim.7993
    • (2018) Statist Med
    • Riley, R.D.1    Snell, K.I.E.2    Ensor, J.3
  • 11
    • 0029613841 scopus 로고
    • Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates
    • Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48(12):1503-1510.
    • (1995) J Clin Epidemiol , vol.48 , Issue.12 , pp. 1503-1510
    • Peduzzi, P.1    Concato, J.2    Feinstein, A.R.3    Holford, T.R.4
  • 12
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373-1379.
    • (1996) J Clin Epidemiol , vol.49 , Issue.12 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.R.4    Feinstein, A.R.5
  • 13
    • 0029584326 scopus 로고
    • Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy
    • Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy. J Clin Epidemiol. 1995;48(12):1495-1501.
    • (1995) J Clin Epidemiol , vol.48 , Issue.12 , pp. 1495-1501
    • Concato, J.1    Peduzzi, P.2    Holford, T.R.3    Feinstein, A.R.4
  • 14
    • 33847382959 scopus 로고    scopus 로고
    • Relaxing the rule of ten events per variable in logistic and Cox regression
    • Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165(6):710-718.
    • (2007) Am J Epidemiol , vol.165 , Issue.6 , pp. 710-718
    • Vittinghoff, E.1    McCulloch, C.E.2
  • 16
    • 84962074698 scopus 로고    scopus 로고
    • Adequate sample size for developing prediction models is not simply related to events per variable
    • Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol. 2016;76:175-182.
    • (2016) J Clin Epidemiol , vol.76 , pp. 175-182
    • Ogundimu, E.O.1    Altman, D.G.2    Collins, G.S.3
  • 17
    • 85018749650 scopus 로고    scopus 로고
    • Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models
    • Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res. 2017;26(2):796-808.
    • (2017) Stat Methods Med Res , vol.26 , Issue.2 , pp. 796-808
    • Austin, P.C.1    Steyerberg, E.W.2
  • 18
    • 84948711435 scopus 로고    scopus 로고
    • A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data
    • Wynants L, Bouwmeester W, Moons KG, et al. A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data. J Clin Epidemiol. 2015;68(12):1406-1414.
    • (2015) J Clin Epidemiol , vol.68 , Issue.12 , pp. 1406-1414
    • Wynants, L.1    Bouwmeester, W.2    Moons, K.G.3
  • 19
    • 84923873960 scopus 로고    scopus 로고
    • Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
    • van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol. 2014;14(1):137.
    • (2014) BMC Med Res Methodol , vol.14 , Issue.1 , pp. 137
    • van der Ploeg, T.1    Austin, P.C.2    Steyerberg, E.W.3
  • 20
    • 79960848483 scopus 로고    scopus 로고
    • Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure
    • Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol. 2011;64(9):993-1000.
    • (2011) J Clin Epidemiol , vol.64 , Issue.9 , pp. 993-1000
    • Courvoisier, D.S.1    Combescure, C.2    Agoritsas, T.3    Gayet-Ageron, A.4    Perneger, T.V.5
  • 22
    • 0035530906 scopus 로고    scopus 로고
    • Shrinkage and penalized likelihood as methods to improve predictive accuracy
    • Van Houwelingen JC. Shrinkage and penalized likelihood as methods to improve predictive accuracy. Stat Neerlandica. 2001;55(1):17-34.
    • (2001) Stat Neerlandica , vol.55 , Issue.1 , pp. 17-34
    • Van Houwelingen, J.C.1
  • 23
    • 0025151933 scopus 로고
    • Predictive value of statistical models
    • Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Statist Med. 1990;9(11):1303-1325.
    • (1990) Statist Med , vol.9 , Issue.11 , pp. 1303-1325
    • Van Houwelingen, J.C.1    Le Cessie, S.2
  • 24
    • 0001573594 scopus 로고
    • Regression, prediction and shrinkage
    • Copas JB. Regression, prediction and shrinkage. J Royal Stat Soc Ser B Methodol. 1983;45(3):311-354.
    • (1983) J Royal Stat Soc Ser B Methodol , vol.45 , Issue.3 , pp. 311-354
    • Copas, J.B.1
  • 25
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B Methodol. 1996;58(1):267-288.
    • (1996) J Royal Stat Soc Ser B Methodol , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 26
    • 84942465542 scopus 로고    scopus 로고
    • How to develop a more accurate risk prediction model when there are few events
    • Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. BMJ. 2015;351:h3868.
    • (2015) BMJ , vol.351 , pp. h3868
    • Pavlou, M.1    Ambler, G.2    Seaman, S.R.3
  • 27
    • 11144288616 scopus 로고    scopus 로고
    • Penalized maximum likelihood estimation to directly adjust diagnostic and prognostic prediction models for overoptimism: a clinical example
    • Moons KG, Donders AR, Steyerberg EW, Harrell FE. Penalized maximum likelihood estimation to directly adjust diagnostic and prognostic prediction models for overoptimism: a clinical example. J Clin Epidemiol. 2004;57(12):1262-1270.
    • (2004) J Clin Epidemiol , vol.57 , Issue.12 , pp. 1262-1270
    • Moons, K.G.1    Donders, A.R.2    Steyerberg, E.W.3    Harrell, F.E.4
  • 28
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. 1979;7(1):1-26.
    • (1979) Ann Stat , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 29
    • 84897073458 scopus 로고    scopus 로고
    • Predicting mortality in patients with diabetes starting dialysis
    • van Diepen M, Schroijen MA, Dekkers OM, et al. Predicting mortality in patients with diabetes starting dialysis. PLoS One. 2014;9(3):e89744.
    • (2014) PLoS One , vol.9 , Issue.3
    • van Diepen, M.1    Schroijen, M.A.2    Dekkers, O.M.3
  • 30
    • 0031160755 scopus 로고    scopus 로고
    • Using regression models for prediction: shrinkage and regression to the mean
    • Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Stat Methods Med Res. 1997;6(2):167-183.
    • (1997) Stat Methods Med Res , vol.6 , Issue.2 , pp. 167-183
    • Copas, J.B.1
  • 31
    • 0001216360 scopus 로고
    • 2 measures based on wald and likelihood ratio joint significance tests
    • 2 measures based on wald and likelihood ratio joint significance tests. Am Stat. 1990;44(3):250-253.
    • (1990) Am Stat , vol.44 , Issue.3 , pp. 250-253
    • Magee, L.1
  • 33
  • 34
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • Nagelkerke N. A note on a general definition of the coefficient of determination. Biometrika. 1991;78:691-692.
    • (1991) Biometrika , vol.78 , pp. 691-692
    • Nagelkerke, N.1
  • 35
    • 85009129532 scopus 로고    scopus 로고
    • A guide to systematic review and meta-analysis of prediction model performance
    • Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.
    • (2017) BMJ , vol.356 , pp. i6460
    • Debray, T.P.1    Damen, J.A.2    Snell, K.I.3
  • 36
    • 85055267920 scopus 로고    scopus 로고
    • Tufts PACE clinical predictive model registry: update 1990 through 2015
    • Wessler BS, Paulus J, Lundquist CM, et al. Tufts PACE clinical predictive model registry: update 1990 through 2015. Diagn Progn Res. 2017;1(1):20.
    • (2017) Diagn Progn Res , vol.1 , Issue.1 , pp. 20
    • Wessler, B.S.1    Paulus, J.2    Lundquist, C.M.3
  • 37
    • 0002297105 scopus 로고
    • Conditional logit analysis of qualitative choice behavior
    • Zarembka P, ed., Cambridge, MA, Academic Press
    • McFadden D. Conditional logit analysis of qualitative choice behavior. In: Zarembka P, ed. Frontiers in Econometrics. Cambridge, MA: Academic Press; 1974:104-142.
    • (1974) Frontiers in Econometrics , pp. 104-142
    • McFadden, D.1
  • 38
    • 13644250447 scopus 로고    scopus 로고
    • Explained randomness in proportional hazards models
    • O'Quigley J, Xu R, Stare J. Explained randomness in proportional hazards models. Statist Med. 2005;24(3):479-489.
    • (2005) Statist Med , vol.24 , Issue.3 , pp. 479-489
    • O'Quigley, J.1    Xu, R.2    Stare, J.3
  • 39
    • 33646515606 scopus 로고    scopus 로고
    • Explained variation for survival models
    • Royston P. Explained variation for survival models. Stata J. 2006;6(1):83-96.
    • (2006) Stata J , vol.6 , Issue.1 , pp. 83-96
    • Royston, P.1
  • 40
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Statist Med. 2004;23(5):723-748.
    • (2004) Statist Med , vol.23 , Issue.5 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 41
    • 84944065233 scopus 로고    scopus 로고
    • Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data
    • Jinks RC, Royston P, Parmar MK. Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data. BMC Med Res Methodol. 2015;15(1):82.
    • (2015) BMC Med Res Methodol , vol.15 , Issue.1 , pp. 82
    • Jinks, R.C.1    Royston, P.2    Parmar, M.K.3
  • 42
    • 85019985065 scopus 로고    scopus 로고
    • Developing and validating a cardiovascular risk score for patients in the community with prior cardiovascular disease
    • Poppe KK, Doughty RN, Wells S, et al. Developing and validating a cardiovascular risk score for patients in the community with prior cardiovascular disease. Heart. 2017;103(12):891-892.
    • (2017) Heart , vol.103 , Issue.12 , pp. 891-892
    • Poppe, K.K.1    Doughty, R.N.2    Wells, S.3
  • 43
    • 85037856069 scopus 로고    scopus 로고
    • Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study
    • Hippisley-Cox J, Coupland C. Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ. 2017;359:j5019.
    • (2017) BMJ , vol.359 , pp. j5019
    • Hippisley-Cox, J.1    Coupland, C.2
  • 44
    • 85006113555 scopus 로고    scopus 로고
    • Development and validation of risk prediction model for venous thromboembolism in postpartum women: multinational cohort study
    • Sultan AA, West J, Grainge MJ, et al. Development and validation of risk prediction model for venous thromboembolism in postpartum women: multinational cohort study. BMJ. 2016;355:i6253.
    • (2016) BMJ , vol.355 , pp. i6253
    • Sultan, A.A.1    West, J.2    Grainge, M.J.3
  • 45
    • 0001529786 scopus 로고
    • Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator
    • Dvoretzky A, Kiefer J, Wolfowitz J. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann Math Stat. 1956;27(3):642-669.
    • (1956) Ann Math Stat , vol.27 , Issue.3 , pp. 642-669
    • Dvoretzky, A.1    Kiefer, J.2    Wolfowitz, J.3
  • 46
    • 84976606708 scopus 로고    scopus 로고
    • Does my patient have chronic Chagas disease? Development and temporal validation of a diagnostic risk score
    • Brasil PE, Xavier SS, Holanda MT, et al. Does my patient have chronic Chagas disease? Development and temporal validation of a diagnostic risk score. Rev Soc Bras Med Trop. 2016;49(3):329-340.
    • (2016) Rev Soc Bras Med Trop , vol.49 , Issue.3 , pp. 329-340
    • Brasil, P.E.1    Xavier, S.S.2    Holanda, M.T.3
  • 47
    • 84958543113 scopus 로고    scopus 로고
    • Prediction of risk of recurrence of venous thromboembolism following treatment for a first unprovoked venous thromboembolism: systematic review, prognostic model and clinical decision rule, and economic evaluation
    • Ensor J, Riley RD, Jowett S, et al. Prediction of risk of recurrence of venous thromboembolism following treatment for a first unprovoked venous thromboembolism: systematic review, prognostic model and clinical decision rule, and economic evaluation. Health Technol Assess. 2016;20(12):1-190.
    • (2016) Health Technol Assess , vol.20 , Issue.12 , pp. 1-190
    • Ensor, J.1    Riley, R.D.2    Jowett, S.3
  • 48
    • 0037102914 scopus 로고    scopus 로고
    • Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects
    • Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statist Med. 2002;21(15):2175-2197.
    • (2002) Statist Med , vol.21 , Issue.15 , pp. 2175-2197
    • Royston, P.1    Parmar, M.K.B.2
  • 50
    • 41549115181 scopus 로고    scopus 로고
    • Sample size planning for statistical power and accuracy in parameter estimation
    • Maxwell SE, Kelley K, Rausch JR. Sample size planning for statistical power and accuracy in parameter estimation. Annu Rev Psychol. 2008;59:537-563.
    • (2008) Annu Rev Psychol , vol.59 , pp. 537-563
    • Maxwell, S.E.1    Kelley, K.2    Rausch, J.R.3
  • 51
    • 0043074894 scopus 로고    scopus 로고
    • An overview of variance inflation factors for sample-size calculation
    • Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. An overview of variance inflation factors for sample-size calculation. Eval Health Prof. 2003;26(3):239-257.
    • (2003) Eval Health Prof , vol.26 , Issue.3 , pp. 239-257
    • Hsieh, F.Y.1    Lavori, P.W.2    Cohen, H.J.3    Feussner, J.R.4
  • 52
    • 0034528314 scopus 로고    scopus 로고
    • Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates
    • Hsieh FY, Lavori PW. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials. 2000;21(6):552-560.
    • (2000) Control Clin Trials , vol.21 , Issue.6 , pp. 552-560
    • Hsieh, F.Y.1    Lavori, P.W.2
  • 53
    • 0034728370 scopus 로고    scopus 로고
    • Sample size considerations for the evaluation of prognostic factors in survival analysis
    • Schmoor C, Sauerbrei W, Schumacher M. Sample size considerations for the evaluation of prognostic factors in survival analysis. Stat Med. 2000;19(4):441-452.
    • (2000) Stat Med , vol.19 , Issue.4 , pp. 441-452
    • Schmoor, C.1    Sauerbrei, W.2    Schumacher, M.3
  • 54
    • 0028027445 scopus 로고
    • Planning for precision in survival studies
    • Borenstein M. Planning for precision in survival studies. J Clin Epidemiol. 1994;47(11):1277-1285.
    • (1994) J Clin Epidemiol , vol.47 , Issue.11 , pp. 1277-1285
    • Borenstein, M.1
  • 55
    • 1342289176 scopus 로고    scopus 로고
    • Power by simulation
    • Feiveson AH. Power by simulation. Stata J. 2002;2(2):107-124.
    • (2002) Stata J , vol.2 , Issue.2 , pp. 107-124
    • Feiveson, A.H.1
  • 56
    • 0032581454 scopus 로고    scopus 로고
    • A simple method of sample size calculation for linear and logistic regression
    • Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Statist Med. 1998;17(14):1623-1634.
    • (1998) Statist Med , vol.17 , Issue.14 , pp. 1623-1634
    • Hsieh, F.Y.1    Bloch, D.A.2    Larsen, M.D.3
  • 57
    • 84996911556 scopus 로고    scopus 로고
    • No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
    • van Smeden M, de Groot JA, Moons KG, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16(1):163.
    • (2016) BMC Med Res Methodol , vol.16 , Issue.1 , pp. 163
    • van Smeden, M.1    de Groot, J.A.2    Moons, K.G.3
  • 58
    • 84874455583 scopus 로고    scopus 로고
    • Prognosis research strategy (PROGRESS) 2: prognostic factor research
    • Riley RD, Hayden JA, Steyerberg EW, et al. Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 2013;10(2):e1001380.
    • (2013) PLoS Med , vol.10 , Issue.2
    • Riley, R.D.1    Hayden, J.A.2    Steyerberg, E.W.3
  • 59
    • 84920623458 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis Or diagnosis (TRIPOD): explanation and elaboration
    • Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis Or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-W73.
    • (2015) Ann Intern Med , vol.162 , Issue.1 , pp. W1-W73
    • Moons, K.G.1    Altman, D.G.2    Reitsma, J.B.3
  • 60
    • 85070342480 scopus 로고    scopus 로고
    • Sample size for binary logistic prediction models: beyond events per variable criteria
    • In press
    • van Smeden M, Moons KG, de Groot JA, et al. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res. 2018. In press.
    • (2018) Stat Methods Med Res
    • van Smeden, M.1    Moons, K.G.2    de Groot, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.