-
1
-
-
84924036082
-
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
-
Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med. 2015;13(1):1.
-
(2015)
BMC Med
, vol.13
, Issue.1
, pp. 1
-
-
Collins, G.S.1
Reitsma, J.B.2
Altman, D.G.3
Moons, K.G.M.4
-
2
-
-
84920623458
-
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration
-
Moons KGM, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-W73.
-
(2015)
Ann Intern Med
, vol.162
, Issue.1
, pp. W1-W73
-
-
Moons, K.G.M.1
Altman, D.G.2
Reitsma, J.B.3
-
4
-
-
37448999483
-
Polytomous logistic regression analysis could be applied more often in diagnostic research
-
Biesheuvel CJ, Vergouwe Y, Steyerberg EW, Grobbee DE, Moons KGM. Polytomous logistic regression analysis could be applied more often in diagnostic research. J Clin Epidemiol. 2008;61(2):125-134.
-
(2008)
J Clin Epidemiol
, vol.61
, Issue.2
, pp. 125-134
-
-
Biesheuvel, C.J.1
Vergouwe, Y.2
Steyerberg, E.W.3
Grobbee, D.E.4
Moons, K.G.M.5
-
5
-
-
0036236486
-
Diagnostic studies as multivariable, prediction research
-
Moons KGM, Grobbee DE. Diagnostic studies as multivariable, prediction research. J Epidemiol Community Health. 2002;56(5):337-338.
-
(2002)
J Epidemiol Community Health
, vol.56
, Issue.5
, pp. 337-338
-
-
Moons, K.G.M.1
Grobbee, D.E.2
-
6
-
-
67650022801
-
Prognosis and prognostic research: what, why, and how?
-
Moons KGM, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and prognostic research: what, why, and how? Bmj. 2009;338:b375.
-
(2009)
Bmj
, vol.338
, pp. b375
-
-
Moons, K.G.M.1
Royston, P.2
Vergouwe, Y.3
Grobbee, D.E.4
Altman, D.G.5
-
7
-
-
84862571423
-
A clinical prediction model to assess the risk of operative delivery
-
Schuit E, Kwee A, Westerhuis MEMH, et al. A clinical prediction model to assess the risk of operative delivery. BJOG: Int J Obstet Gynaecol. 2012;119(8):915-923.
-
(2012)
BJOG: Int J Obstet Gynaecol
, vol.119
, Issue.8
, pp. 915-923
-
-
Schuit, E.1
Kwee, A.2
Westerhuis, M.E.M.H.3
-
8
-
-
84873473361
-
Prediction of recovery, dependence or death in elders who become disabled during hospitalization
-
Barnes DE, Mehta KM, Boscardin WJ, et al. Prediction of recovery, dependence or death in elders who become disabled during hospitalization. J Gen Intern Med. 2013;28(2):261-268.
-
(2013)
J Gen Intern Med
, vol.28
, Issue.2
, pp. 261-268
-
-
Barnes, D.E.1
Mehta, K.M.2
Boscardin, W.J.3
-
9
-
-
77957988487
-
Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models
-
Van Calster B, Valentin L, Van Holsbeke C, et al. Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models. BMC Med Res Methodol. 2010;10(1):96.
-
(2010)
BMC Med Res Methodol
, vol.10
, Issue.1
, pp. 96
-
-
Van Calster, B.1
Valentin, L.2
Van Holsbeke, C.3
-
10
-
-
37449021073
-
Polytomous regression did not outperform dichotomous logistic regression in diagnosing serious bacterial infections in febrile children
-
Roukema J, van Loenhout RB, Steyerberg EW, Moons KGM, Bleeker SE, Moll HA. Polytomous regression did not outperform dichotomous logistic regression in diagnosing serious bacterial infections in febrile children. J Clin Epidemiol. 2008;61(2):135-141.
-
(2008)
J Clin Epidemiol
, vol.61
, Issue.2
, pp. 135-141
-
-
Roukema, J.1
van Loenhout, R.B.2
Steyerberg, E.W.3
Moons, K.G.M.4
Bleeker, S.E.5
Moll, H.A.6
-
11
-
-
0035080356
-
Prognostic modeling with logistic regression analysis in search of a sensible strategy in small data sets
-
Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic modeling with logistic regression analysis in search of a sensible strategy in small data sets. Med Decis Making. 2001;21(1):45-56.
-
(2001)
Med Decis Making
, vol.21
, Issue.1
, pp. 45-56
-
-
Steyerberg, E.W.1
Eijkemans, M.J.C.2
Harrell, F.E.3
Habbema, J.D.F.4
-
12
-
-
0037203173
-
Simplifying a prognostic model: a simulation study based on clinical data
-
Ambler G, Brady AR, Royston P. Simplifying a prognostic model: a simulation study based on clinical data. Statist Med. 2002;21(24):3803-3822.
-
(2002)
Statist Med
, vol.21
, Issue.24
, pp. 3803-3822
-
-
Ambler, G.1
Brady, A.R.2
Royston, P.3
-
13
-
-
0030474271
-
A simulation study of the number of events per variable in logistic regression analysis
-
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373-1379.
-
(1996)
J Clin Epidemiol
, vol.49
, Issue.12
, pp. 1373-1379
-
-
Peduzzi, P.1
Concato, J.2
Kemper, E.3
Holford, T.R.4
Feinstein, A.R.5
-
14
-
-
0034732710
-
Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets
-
Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Statist Med. 2000;19(8):1059-1079.
-
(2000)
Statist Med
, vol.19
, Issue.8
, pp. 1059-1079
-
-
Steyerberg, E.W.1
Eijkemans, M.J.C.2
Harrell, F.E.3
Habbema, J.D.F.4
-
15
-
-
79960848483
-
Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure
-
Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol. 2011;64(9):993-1000.
-
(2011)
J Clin Epidemiol
, vol.64
, Issue.9
, pp. 993-1000
-
-
Courvoisier, D.S.1
Combescure, C.2
Agoritsas, T.3
Gayet-Ageron, A.4
Perneger, T.V.5
-
16
-
-
85018749650
-
Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models
-
Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res. 2017;26(2):796-808.
-
(2017)
Stat Methods Med Res
, vol.26
, Issue.2
, pp. 796-808
-
-
Austin, P.C.1
Steyerberg, E.W.2
-
17
-
-
84905667466
-
Correcting for optimistic prediction in small data sets
-
Smith GCS, Seaman SR, Wood AM, Royston P, White IR. Correcting for optimistic prediction in small data sets. Am J Epidemiol. 2014;180(3):318-324.
-
(2014)
Am J Epidemiol
, vol.180
, Issue.3
, pp. 318-324
-
-
Smith, G.C.S.1
Seaman, S.R.2
Wood, A.M.3
Royston, P.4
White, I.R.5
-
18
-
-
0025151933
-
Predictive value of statistical models
-
Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Statist Med. 1990;9(11):1303-1325.
-
(1990)
Statist Med
, vol.9
, Issue.11
, pp. 1303-1325
-
-
Van Houwelingen, J.C.1
Le Cessie, S.2
-
19
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996;58(1):267-288.
-
(1996)
J R Stat Soc Ser B Stat Methodol
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
22
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55-67.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
23
-
-
84942487147
-
Ridge regression: applications to nonorthogonal problems
-
Hoerl AE, Kennard RW. Ridge regression: applications to nonorthogonal problems. Technometrics. 1970;12(1):69-82.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 69-82
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
24
-
-
0003684449
-
-
2nd, ed., New York, NY, Springer Science+Business Media
-
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York, NY: Springer Science+Business Media; 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
25
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22.
-
(2010)
J Stat Softw
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
26
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36.
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
27
-
-
84944363874
-
Evaluating the yield of medical tests
-
Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247(18):2543-2546.
-
(1982)
JAMA
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
Lee, K.L.4
Rosati, R.A.5
-
28
-
-
84866464239
-
Extending the c-statistic to nominal polytomous outcomes: the polytomous discrimination index
-
Van Calster B, Van Belle V, Vergouwe Y, Timmerman D, Van Huffel S, Steyerberg EW. Extending the c-statistic to nominal polytomous outcomes: the polytomous discrimination index. Statist Med. 2012;31(23):2610-2626.
-
(2012)
Statist Med
, vol.31
, Issue.23
, pp. 2610-2626
-
-
Van Calster, B.1
Van Belle, V.2
Vergouwe, Y.3
Timmerman, D.4
Van Huffel, S.5
Steyerberg, E.W.6
-
29
-
-
84901941477
-
Assessing calibration of multinomial risk prediction models
-
Van Hoorde K, Vergouwe Y, Timmerman D, Van Huffel S, Steyerberg EW, Van Calster B. Assessing calibration of multinomial risk prediction models. Statist Med. 2014;33(15):2585-2596.
-
(2014)
Statist Med
, vol.33
, Issue.15
, pp. 2585-2596
-
-
Van Hoorde, K.1
Vergouwe, Y.2
Timmerman, D.3
Van Huffel, S.4
Steyerberg, E.W.5
Van Calster, B.6
-
30
-
-
0000149045
-
Two further applications of a model for binary regression
-
Cox DR. Two further applications of a model for binary regression. Biometrika. 1958;45(3/4):562-565.
-
(1958)
Biometrika
, vol.45
, Issue.3-4
, pp. 562-565
-
-
Cox, D.R.1
-
31
-
-
0025766123
-
Validation techniques for logistic regression models
-
Miller ME, Hui SL, Tierney WM. Validation techniques for logistic regression models. Statist Med. 1991;10(8):1213-1226.
-
(1991)
Statist Med
, vol.10
, Issue.8
, pp. 1213-1226
-
-
Miller, M.E.1
Hui, S.L.2
Tierney, W.M.3
-
32
-
-
0003010182
-
Verification of forecasts expressed in terms of probability
-
Brier GW. Verification of forecasts expressed in terms of probability. Mon Weather Rev. 1950;78(1):1-3.
-
(1950)
Mon Weather Rev
, vol.78
, Issue.1
, pp. 1-3
-
-
Brier, G.W.1
-
33
-
-
77956887506
-
A note on a general definition of the coefficient of determination
-
Nagelkerke NJD. A note on a general definition of the coefficient of determination. Biometrika. 1991;78(3):691-692.
-
(1991)
Biometrika
, vol.78
, Issue.3
, pp. 691-692
-
-
Nagelkerke, N.J.D.1
-
34
-
-
0030069896
-
Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
-
Harrell FE, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statist Med. 1996;15:361-387.
-
(1996)
Statist Med
, vol.15
, pp. 361-387
-
-
Harrell, F.E.1
Lee, K.L.2
Mark, D.B.3
-
36
-
-
84871256908
-
Interpreting incremental value of markers added to risk prediction models
-
Pencina MJ, D'Agostino RB, Pencina KM, Janssens ACJW, Greenland P. Interpreting incremental value of markers added to risk prediction models. Am J Epidemiol. 2012;176(6):473-481.
-
(2012)
Am J Epidemiol
, vol.176
, Issue.6
, pp. 473-481
-
-
Pencina, M.J.1
D'Agostino, R.B.2
Pencina, K.M.3
Janssens, A.C.J.W.4
Greenland, P.5
-
37
-
-
33847382959
-
Relaxing the rule of ten events per variable in logistic and cox regression
-
Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol. 2007;165(6):710-718.
-
(2007)
Am J Epidemiol
, vol.165
, Issue.6
, pp. 710-718
-
-
Vittinghoff, E.1
McCulloch, C.E.2
-
38
-
-
84863304598
-
-
Vienna, Austria, R Foundation for Statistical Computing, Accessed March 29, 2017
-
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. https://www.R-project.org/. Accessed March 29, 2017.
-
(2015)
R: a language and environment for statistical computing
-
-
-
39
-
-
84902311249
-
-
Package version 0.2-4., Accessed March 29, 2017
-
Croissant Y. mlogit: multinomial logit model. Package version 0.2-4. 2013. http://CRAN.R-project.org/package=mlogit. Accessed March 29, 2017.
-
(2013)
mlogit: multinomial logit model
-
-
Croissant, Y.1
-
40
-
-
79960577816
-
maxLik: a package for maximum likelihood estimation in R
-
Henningsen A, Toomet O. maxLik: a package for maximum likelihood estimation in R. Comput Stat. 2011;26(3):443-458.
-
(2011)
Comput Stat
, vol.26
, Issue.3
, pp. 443-458
-
-
Henningsen, A.1
Toomet, O.2
-
41
-
-
33644836410
-
Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group
-
Timmerman D, Testa AC, Bourne T, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol. 2005;23(34):8794-8801.
-
(2005)
J Clin Oncol
, vol.23
, Issue.34
, pp. 8794-8801
-
-
Timmerman, D.1
Testa, A.C.2
Bourne, T.3
-
42
-
-
84959490685
-
Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events
-
Pavlou M, Ambler G, Seaman S, De Iorio M, Omar RZ. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Statist Med. 2015;35(7):1159-1177.
-
(2015)
Statist Med
, vol.35
, Issue.7
, pp. 1159-1177
-
-
Pavlou, M.1
Ambler, G.2
Seaman, S.3
De Iorio, M.4
Omar, R.Z.5
-
43
-
-
85015204988
-
Firth's logistic regression with rare events: accurate effect estimates and predictions?
-
Puhr R, Heinze G, Nold M, Lusa L, Geroldinger A. Firth's logistic regression with rare events: accurate effect estimates and predictions? Statist Med. 2017;36(14):2302-2317.
-
(2017)
Statist Med
, vol.36
, Issue.14
, pp. 2302-2317
-
-
Puhr, R.1
Heinze, G.2
Nold, M.3
Lusa, L.4
Geroldinger, A.5
-
44
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67(2):301-320.
-
(2005)
J R Stat Soc Ser B Stat Methodol
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
45
-
-
34548536008
-
On the “degrees of freedom” of the lasso
-
Zou H, Hastie T, Tibshirani R. On the “degrees of freedom” of the lasso. Ann Statist. 2007;35(5):2173-2192.
-
(2007)
Ann Statist
, vol.35
, Issue.5
, pp. 2173-2192
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
-
46
-
-
0002662712
-
On the existence of maximum likelihood estimates in logistic regression models
-
Albert A, Anderson JA. On the existence of maximum likelihood estimates in logistic regression models. Biometrika. 1984;71(1):1-10.
-
(1984)
Biometrika
, vol.71
, Issue.1
, pp. 1-10
-
-
Albert, A.1
Anderson, J.A.2
-
47
-
-
0001431651
-
A note on A. Albert and J.A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models
-
Santner TJ, Duffy DE. A note on A. Albert and J.A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models. Biometrika. 1986;73(3):755-758.
-
(1986)
Biometrika
, vol.73
, Issue.3
, pp. 755-758
-
-
Santner, T.J.1
Duffy, D.E.2
-
48
-
-
85070342480
-
Sample size for binary logistic prediction models: beyond events per variable criteria
-
van Smeden M, Moons KGM, de Groot JAH, et al. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res. 2018.
-
(2018)
Stat Methods Med Res
-
-
van Smeden, M.1
Moons, K.G.M.2
de Groot, J.A.H.3
-
49
-
-
84996911556
-
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
-
van Smeden M, de Groot JAH, Moons KGM, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16(1):163.
-
(2016)
BMC Med Res Methodol
, vol.16
, Issue.1
, pp. 163
-
-
van Smeden, M.1
de Groot, J.A.H.2
Moons, K.G.M.3
-
50
-
-
84962074698
-
Adequate sample size for developing prediction models is not simply related to events per variable
-
Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol. 2016;76:175-182.
-
(2016)
J Clin Epidemiol
, vol.76
, pp. 175-182
-
-
Ogundimu, E.O.1
Altman, D.G.2
Collins, G.S.3
|