메뉴 건너뛰기




Volumn 38, Issue 9, 2019, Pages 1601-1619

Sample size considerations and predictive performance of multinomial logistic prediction models

Author keywords

Multinomial Logistic Regression; overfit; prediction models; predictive performance; shrinkage

Indexed keywords

ANALYTIC METHOD; ARTICLE; CALIBRATION; FEMALE; HUMAN; MAJOR CLINICAL STUDY; MATHEMATICAL MODEL; OVARY CANCER; PERFORMANCE MEASUREMENT SYSTEM; PREDICTIVE VALUE; PROCESS OPTIMIZATION; SAMPLE SIZE; SIMULATION; COMPUTER SIMULATION; STATISTICAL MODEL;

EID: 85059557306     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.8063     Document Type: Article
Times cited : (89)

References (50)
  • 1
    • 84924036082 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
    • Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med. 2015;13(1):1.
    • (2015) BMC Med , vol.13 , Issue.1 , pp. 1
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.M.4
  • 2
    • 84920623458 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration
    • Moons KGM, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-W73.
    • (2015) Ann Intern Med , vol.162 , Issue.1 , pp. W1-W73
    • Moons, K.G.M.1    Altman, D.G.2    Reitsma, J.B.3
  • 5
    • 0036236486 scopus 로고    scopus 로고
    • Diagnostic studies as multivariable, prediction research
    • Moons KGM, Grobbee DE. Diagnostic studies as multivariable, prediction research. J Epidemiol Community Health. 2002;56(5):337-338.
    • (2002) J Epidemiol Community Health , vol.56 , Issue.5 , pp. 337-338
    • Moons, K.G.M.1    Grobbee, D.E.2
  • 7
    • 84862571423 scopus 로고    scopus 로고
    • A clinical prediction model to assess the risk of operative delivery
    • Schuit E, Kwee A, Westerhuis MEMH, et al. A clinical prediction model to assess the risk of operative delivery. BJOG: Int J Obstet Gynaecol. 2012;119(8):915-923.
    • (2012) BJOG: Int J Obstet Gynaecol , vol.119 , Issue.8 , pp. 915-923
    • Schuit, E.1    Kwee, A.2    Westerhuis, M.E.M.H.3
  • 8
    • 84873473361 scopus 로고    scopus 로고
    • Prediction of recovery, dependence or death in elders who become disabled during hospitalization
    • Barnes DE, Mehta KM, Boscardin WJ, et al. Prediction of recovery, dependence or death in elders who become disabled during hospitalization. J Gen Intern Med. 2013;28(2):261-268.
    • (2013) J Gen Intern Med , vol.28 , Issue.2 , pp. 261-268
    • Barnes, D.E.1    Mehta, K.M.2    Boscardin, W.J.3
  • 9
    • 77957988487 scopus 로고    scopus 로고
    • Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models
    • Van Calster B, Valentin L, Van Holsbeke C, et al. Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models. BMC Med Res Methodol. 2010;10(1):96.
    • (2010) BMC Med Res Methodol , vol.10 , Issue.1 , pp. 96
    • Van Calster, B.1    Valentin, L.2    Van Holsbeke, C.3
  • 10
    • 37449021073 scopus 로고    scopus 로고
    • Polytomous regression did not outperform dichotomous logistic regression in diagnosing serious bacterial infections in febrile children
    • Roukema J, van Loenhout RB, Steyerberg EW, Moons KGM, Bleeker SE, Moll HA. Polytomous regression did not outperform dichotomous logistic regression in diagnosing serious bacterial infections in febrile children. J Clin Epidemiol. 2008;61(2):135-141.
    • (2008) J Clin Epidemiol , vol.61 , Issue.2 , pp. 135-141
    • Roukema, J.1    van Loenhout, R.B.2    Steyerberg, E.W.3    Moons, K.G.M.4    Bleeker, S.E.5    Moll, H.A.6
  • 11
    • 0035080356 scopus 로고    scopus 로고
    • Prognostic modeling with logistic regression analysis in search of a sensible strategy in small data sets
    • Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic modeling with logistic regression analysis in search of a sensible strategy in small data sets. Med Decis Making. 2001;21(1):45-56.
    • (2001) Med Decis Making , vol.21 , Issue.1 , pp. 45-56
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Harrell, F.E.3    Habbema, J.D.F.4
  • 12
    • 0037203173 scopus 로고    scopus 로고
    • Simplifying a prognostic model: a simulation study based on clinical data
    • Ambler G, Brady AR, Royston P. Simplifying a prognostic model: a simulation study based on clinical data. Statist Med. 2002;21(24):3803-3822.
    • (2002) Statist Med , vol.21 , Issue.24 , pp. 3803-3822
    • Ambler, G.1    Brady, A.R.2    Royston, P.3
  • 13
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373-1379.
    • (1996) J Clin Epidemiol , vol.49 , Issue.12 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.R.4    Feinstein, A.R.5
  • 14
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets
    • Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Statist Med. 2000;19(8):1059-1079.
    • (2000) Statist Med , vol.19 , Issue.8 , pp. 1059-1079
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Harrell, F.E.3    Habbema, J.D.F.4
  • 15
    • 79960848483 scopus 로고    scopus 로고
    • Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure
    • Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol. 2011;64(9):993-1000.
    • (2011) J Clin Epidemiol , vol.64 , Issue.9 , pp. 993-1000
    • Courvoisier, D.S.1    Combescure, C.2    Agoritsas, T.3    Gayet-Ageron, A.4    Perneger, T.V.5
  • 16
    • 85018749650 scopus 로고    scopus 로고
    • Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models
    • Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res. 2017;26(2):796-808.
    • (2017) Stat Methods Med Res , vol.26 , Issue.2 , pp. 796-808
    • Austin, P.C.1    Steyerberg, E.W.2
  • 18
    • 0025151933 scopus 로고
    • Predictive value of statistical models
    • Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Statist Med. 1990;9(11):1303-1325.
    • (1990) Statist Med , vol.9 , Issue.11 , pp. 1303-1325
    • Van Houwelingen, J.C.1    Le Cessie, S.2
  • 19
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996;58(1):267-288.
    • (1996) J R Stat Soc Ser B Stat Methodol , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 22
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 23
    • 84942487147 scopus 로고
    • Ridge regression: applications to nonorthogonal problems
    • Hoerl AE, Kennard RW. Ridge regression: applications to nonorthogonal problems. Technometrics. 1970;12(1):69-82.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 69-82
    • Hoerl, A.E.1    Kennard, R.W.2
  • 25
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22.
    • (2010) J Stat Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 26
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 30
    • 0000149045 scopus 로고
    • Two further applications of a model for binary regression
    • Cox DR. Two further applications of a model for binary regression. Biometrika. 1958;45(3/4):562-565.
    • (1958) Biometrika , vol.45 , Issue.3-4 , pp. 562-565
    • Cox, D.R.1
  • 31
    • 0025766123 scopus 로고
    • Validation techniques for logistic regression models
    • Miller ME, Hui SL, Tierney WM. Validation techniques for logistic regression models. Statist Med. 1991;10(8):1213-1226.
    • (1991) Statist Med , vol.10 , Issue.8 , pp. 1213-1226
    • Miller, M.E.1    Hui, S.L.2    Tierney, W.M.3
  • 32
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier GW. Verification of forecasts expressed in terms of probability. Mon Weather Rev. 1950;78(1):1-3.
    • (1950) Mon Weather Rev , vol.78 , Issue.1 , pp. 1-3
    • Brier, G.W.1
  • 33
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • Nagelkerke NJD. A note on a general definition of the coefficient of determination. Biometrika. 1991;78(3):691-692.
    • (1991) Biometrika , vol.78 , Issue.3 , pp. 691-692
    • Nagelkerke, N.J.D.1
  • 34
    • 0030069896 scopus 로고    scopus 로고
    • Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statist Med. 1996;15:361-387.
    • (1996) Statist Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 37
    • 33847382959 scopus 로고    scopus 로고
    • Relaxing the rule of ten events per variable in logistic and cox regression
    • Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol. 2007;165(6):710-718.
    • (2007) Am J Epidemiol , vol.165 , Issue.6 , pp. 710-718
    • Vittinghoff, E.1    McCulloch, C.E.2
  • 38
    • 84863304598 scopus 로고    scopus 로고
    • Vienna, Austria, R Foundation for Statistical Computing, Accessed March 29, 2017
    • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. https://www.R-project.org/. Accessed March 29, 2017.
    • (2015) R: a language and environment for statistical computing
  • 39
    • 84902311249 scopus 로고    scopus 로고
    • Package version 0.2-4., Accessed March 29, 2017
    • Croissant Y. mlogit: multinomial logit model. Package version 0.2-4. 2013. http://CRAN.R-project.org/package=mlogit. Accessed March 29, 2017.
    • (2013) mlogit: multinomial logit model
    • Croissant, Y.1
  • 40
    • 79960577816 scopus 로고    scopus 로고
    • maxLik: a package for maximum likelihood estimation in R
    • Henningsen A, Toomet O. maxLik: a package for maximum likelihood estimation in R. Comput Stat. 2011;26(3):443-458.
    • (2011) Comput Stat , vol.26 , Issue.3 , pp. 443-458
    • Henningsen, A.1    Toomet, O.2
  • 41
    • 33644836410 scopus 로고    scopus 로고
    • Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group
    • Timmerman D, Testa AC, Bourne T, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol. 2005;23(34):8794-8801.
    • (2005) J Clin Oncol , vol.23 , Issue.34 , pp. 8794-8801
    • Timmerman, D.1    Testa, A.C.2    Bourne, T.3
  • 42
    • 84959490685 scopus 로고    scopus 로고
    • Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events
    • Pavlou M, Ambler G, Seaman S, De Iorio M, Omar RZ. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Statist Med. 2015;35(7):1159-1177.
    • (2015) Statist Med , vol.35 , Issue.7 , pp. 1159-1177
    • Pavlou, M.1    Ambler, G.2    Seaman, S.3    De Iorio, M.4    Omar, R.Z.5
  • 43
    • 85015204988 scopus 로고    scopus 로고
    • Firth's logistic regression with rare events: accurate effect estimates and predictions?
    • Puhr R, Heinze G, Nold M, Lusa L, Geroldinger A. Firth's logistic regression with rare events: accurate effect estimates and predictions? Statist Med. 2017;36(14):2302-2317.
    • (2017) Statist Med , vol.36 , Issue.14 , pp. 2302-2317
    • Puhr, R.1    Heinze, G.2    Nold, M.3    Lusa, L.4    Geroldinger, A.5
  • 44
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67(2):301-320.
    • (2005) J R Stat Soc Ser B Stat Methodol , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 45
    • 34548536008 scopus 로고    scopus 로고
    • On the “degrees of freedom” of the lasso
    • Zou H, Hastie T, Tibshirani R. On the “degrees of freedom” of the lasso. Ann Statist. 2007;35(5):2173-2192.
    • (2007) Ann Statist , vol.35 , Issue.5 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 46
    • 0002662712 scopus 로고
    • On the existence of maximum likelihood estimates in logistic regression models
    • Albert A, Anderson JA. On the existence of maximum likelihood estimates in logistic regression models. Biometrika. 1984;71(1):1-10.
    • (1984) Biometrika , vol.71 , Issue.1 , pp. 1-10
    • Albert, A.1    Anderson, J.A.2
  • 47
    • 0001431651 scopus 로고
    • A note on A. Albert and J.A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models
    • Santner TJ, Duffy DE. A note on A. Albert and J.A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models. Biometrika. 1986;73(3):755-758.
    • (1986) Biometrika , vol.73 , Issue.3 , pp. 755-758
    • Santner, T.J.1    Duffy, D.E.2
  • 48
    • 85070342480 scopus 로고    scopus 로고
    • Sample size for binary logistic prediction models: beyond events per variable criteria
    • van Smeden M, Moons KGM, de Groot JAH, et al. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res. 2018.
    • (2018) Stat Methods Med Res
    • van Smeden, M.1    Moons, K.G.M.2    de Groot, J.A.H.3
  • 49
    • 84996911556 scopus 로고    scopus 로고
    • No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
    • van Smeden M, de Groot JAH, Moons KGM, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16(1):163.
    • (2016) BMC Med Res Methodol , vol.16 , Issue.1 , pp. 163
    • van Smeden, M.1    de Groot, J.A.H.2    Moons, K.G.M.3
  • 50
    • 84962074698 scopus 로고    scopus 로고
    • Adequate sample size for developing prediction models is not simply related to events per variable
    • Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol. 2016;76:175-182.
    • (2016) J Clin Epidemiol , vol.76 , pp. 175-182
    • Ogundimu, E.O.1    Altman, D.G.2    Collins, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.