-
1
-
-
0037257790
-
Antibody-dependent enhancement of virus infection and disease
-
Tirado SM, Yoon KJ. 2003. Antibody-dependent enhancement of virus infection and disease. Viral Immunol 16:69–86. https://doi.org/10.1089/ 088282403763635465.
-
(2003)
Viral Immunol
, vol.16
, pp. 69-86
-
-
Tirado, S.M.1
Yoon, K.J.2
-
2
-
-
0242526931
-
Antibody-dependent enhancement of viral infection: Molecular mechanisms and in vivo implications
-
Takada A, Kawaoka Y. 2003. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 13:387–398. https://doi.org/10.1002/rmv.405.
-
(2003)
Rev Med Virol
, vol.13
, pp. 387-398
-
-
Takada, A.1
Kawaoka, Y.2
-
3
-
-
33846659386
-
Neutralizing antibodies after infection with dengue 1 virus
-
Guzman MG, Alvarez M, Rodriguez-Roche R, Bernardo L, Montes T, Vazquez S, Morier L, Alvarez A, Gould EA, Kouri G, Halstead SB. 2007. Neutralizing antibodies after infection with dengue 1 virus. Emerg Infect Dis 13:282–286. https://doi.org/10.3201/eid1302.060539.
-
(2007)
Emerg Infect Dis
, vol.13
, pp. 282-286
-
-
Guzman, M.G.1
Alvarez, M.2
Rodriguez-Roche, R.3
Bernardo, L.4
Montes, T.5
Vazquez, S.6
Morier, L.7
Alvarez, A.8
Gould, E.A.9
Kouri, G.10
Halstead, S.B.11
-
4
-
-
77952180847
-
Cross-reacting antibodies enhance dengue virus infection in humans
-
Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G. 2010. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328:745–748. https://doi.org/10.1126/science.1185181.
-
(2010)
Science
, vol.328
, pp. 745-748
-
-
Dejnirattisai, W.1
Jumnainsong, A.2
Onsirisakul, N.3
Fitton, P.4
Vasanawathana, S.5
Limpitikul, W.6
Puttikhunt, C.7
Edwards, C.8
Duangchinda, T.9
Supasa, S.10
Chawansuntati, K.11
Malasit, P.12
Mongkolsapaya, J.13
Screaton, G.14
-
5
-
-
85033583899
-
Antibody-dependent enhancement of severe dengue disease in humans
-
Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, Balmaseda A, Harris E. 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358:929–932. https://doi.org/10.1126/science.aan6836.
-
(2017)
Science
, vol.358
, pp. 929-932
-
-
Katzelnick, L.C.1
Gresh, L.2
Halloran, M.E.3
Mercado, J.C.4
Kuan, G.5
Gordon, A.6
Balmaseda, A.7
Harris, E.8
-
7
-
-
79952529988
-
Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection
-
Willey S, Aasa-Chapman MMI, O’Farrell S, Pellegrino P, Williams I, Weiss RA, Neil SJD. 2011. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 8:16. https://doi.org/10.1186/1742-4690-8-16.
-
(2011)
Retrovirology
, vol.8
, pp. 16
-
-
Willey, S.1
Aasa-Chapman, M.M.I.2
O’Farrell, S.3
Pellegrino, P.4
Williams, I.5
Weiss, R.A.6
Neil, S.J.D.7
-
8
-
-
44649191357
-
Traitors of the immune system-enhancing antibodies in HIV infection: Their possible implication in HIV vaccine development
-
Beck Z, Prohaszka Z, Fust G. 2008. Traitors of the immune system-enhancing antibodies in HIV infection: their possible implication in HIV vaccine development. Vaccine 26:3078–3085. https://doi.org/10.1016/j.vaccine.2007.12.028.
-
(2008)
Vaccine
, vol.26
, pp. 3078-3085
-
-
Beck, Z.1
Prohaszka, Z.2
Fust, G.3
-
9
-
-
0035121346
-
Infectivityenhancing antibodies to Ebola virus glycoprotein
-
Takada A, Watanabe S, Okazaki K, Kida H, Kawaoka Y. 2001. Infectivityenhancing antibodies to Ebola virus glycoprotein. J Virol 75:2324–2330. https://doi.org/10.1128/JVI.75.5.2324-2330.2001.
-
(2001)
J Virol
, vol.75
, pp. 2324-2330
-
-
Takada, A.1
Watanabe, S.2
Okazaki, K.3
Kida, H.4
Kawaoka, Y.5
-
10
-
-
0038467640
-
Antibody-dependent enhancement of Ebola virus infection
-
Takada A, Feldmann H, Ksiazek TG, Kawaoka Y. 2003. Antibody-dependent enhancement of Ebola virus infection. J Virol 77:7539–7544. https://doi.org/10.1128/jvi.77.13.7539-7544.2003.
-
(2003)
J Virol
, vol.77
, pp. 7539-7544
-
-
Takada, A.1
Feldmann, H.2
Ksiazek, T.G.3
Kawaoka, Y.4
-
11
-
-
67349158649
-
Coronaviruses post-SARS: Update on replication and pathogenesis
-
Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7:439–450. https://doi.org/ 10.1038/nrmicro2147.
-
(2009)
Nat Rev Microbiol
, vol.7
, pp. 439-450
-
-
Perlman, S.1
Netland, J.2
-
12
-
-
33750333638
-
Biochemical aspects of coronavirus replication and virus-host interaction
-
Enjuanes L, Almazan F, Sola I, Zuniga S. 2006. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 60:211–230. https://doi.org/10.1146/annurev.micro.60.080805.142157.
-
(2006)
Annu Rev Microbiol
, vol.60
, pp. 211-230
-
-
Enjuanes, L.1
Almazan, F.2
Sola, I.3
Zuniga, S.4
-
13
-
-
84868516062
-
Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
-
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus A, Fouchier R. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820. https://doi.org/10.1056/ NEJMoa1211721.
-
(2012)
N Engl J Med
, vol.367
, pp. 1814-1820
-
-
Zaki, A.M.1
van Boheemen, S.2
Bestebroer, T.M.3
Osterhaus, A.4
Fouchier, R.5
-
14
-
-
0038076030
-
A novel coronavirus associated with severe acute respiratory syndrome
-
Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong SX, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966. https://doi.org/10.1056/NEJMoa030781.
-
(2003)
N Engl J Med
, vol.348
, pp. 1953-1966
-
-
Ksiazek, T.G.1
Erdman, D.2
Goldsmith, C.S.3
Zaki, S.R.4
Peret, T.5
Emery, S.6
Tong, S.X.7
Urbani, C.8
Comer, J.A.9
Lim, W.10
Rollin, P.E.11
Dowell, S.F.12
Ling, A.E.13
Humphrey, C.D.14
Shieh, W.J.15
Guarner, J.16
Paddock, C.D.17
Rota, P.18
Fields, B.19
DeRisi, J.20
Yang, J.Y.21
Cox, N.22
Hughes, J.M.23
LeDuc, J.W.24
Bellini, W.J.25
Anderson, L.J.26
more..
-
15
-
-
0242717589
-
Coronavirus as a possible cause of severe acute respiratory syndrome
-
Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, Nicholls J, Yee WKS, Yan WW, Cheung MT, Cheng VCC, Chan KH, Tsang DNC, Yung RWH, Ng TK, Yuen KY. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2.
-
(2003)
Lancet
, vol.361
, pp. 1319-1325
-
-
Peiris, J.S.M.1
Lai, S.T.2
Poon, L.L.M.3
Guan, Y.4
Yam, L.Y.C.5
Lim, W.6
Nicholls, J.7
Yee, W.K.S.8
Yan, W.W.9
Cheung, M.T.10
Cheng, V.C.C.11
Chan, K.H.12
Tsang, D.N.C.13
Yung, R.W.H.14
Ng, T.K.15
Yuen, K.Y.16
-
16
-
-
84878966726
-
Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group
-
de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, Galiano M, Gorbalenya AE, Memish ZA, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki AM, Zambon M, Ziebuhr J. 2013. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 87:7790–7792. https://doi.org/10.1128/JVI.01244-13.
-
(2013)
J Virol
, vol.87
, pp. 7790-7792
-
-
de Groot, R.J.1
Baker, S.C.2
Baric, R.S.3
Brown, C.S.4
Drosten, C.5
Enjuanes, L.6
Fouchier, R.A.7
Galiano, M.8
Gorbalenya, A.E.9
Memish, Z.A.10
Perlman, S.11
Poon, L.L.12
Snijder, E.J.13
Stephens, G.M.14
Woo, P.C.15
Zaki, A.M.16
Zambon, M.17
Ziebuhr, J.18
-
17
-
-
84992052428
-
Structure, function, and evolution of coronavirus spike proteins
-
Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 3:237–261. https://doi.org/10.1146/annurev -virology-110615-042301.
-
(2016)
Annu Rev Virol
, vol.3
, pp. 237-261
-
-
Li, F.1
-
18
-
-
85017378927
-
Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
-
Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X, Gao GF. 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8:15092. https://doi.org/10.1038/ncomms15092.
-
(2017)
Nat Commun
, vol.8
, pp. 15092
-
-
Yuan, Y.1
Cao, D.2
Zhang, Y.3
Ma, J.4
Qi, J.5
Wang, Q.6
Lu, G.7
Wu, Y.8
Yan, J.9
Shi, Y.10
Zhang, X.11
Gao, G.F.12
-
19
-
-
85046421949
-
Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins
-
Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, Zhang W, Li F. 2018. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog 14:e1007009. https://doi.org/10.1371/journal.ppat.1007009.
-
(2018)
PLoS Pathog
, vol.14
-
-
Shang, J.1
Zheng, Y.2
Yang, Y.3
Liu, C.4
Geng, Q.5
Luo, C.6
Zhang, W.7
Li, F.8
-
20
-
-
85053079712
-
Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
-
Song W, Gui M, Wang X, Xiang Y. 2018. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 14:e1007236. https://doi.org/10.1371/journal.ppat .1007236.
-
(2018)
PLoS Pathog
, vol.14
-
-
Song, W.1
Gui, M.2
Wang, X.3
Xiang, Y.4
-
21
-
-
85028522287
-
Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
-
Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, Kong WP, Andres EL, Kettenbach AN, Denison MR, Chappell JD, Graham BS, Ward AB, McLellan JS. 2017. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A 114:E7348–E7357. https://doi.org/10.1073/pnas.1707304114.
-
(2017)
Proc Natl Acad Sci U S A
, vol.114
, pp. E7348-E7357
-
-
Pallesen, J.1
Wang, N.2
Corbett, K.S.3
Wrapp, D.4
Kirchdoerfer, R.N.5
Turner, H.L.6
Cottrell, C.A.7
Becker, M.M.8
Wang, L.9
Shi, W.10
Kong, W.P.11
Andres, E.L.12
Kettenbach, A.N.13
Denison, M.R.14
Chappell, J.D.15
Graham, B.S.16
Ward, A.B.17
McLellan, J.S.18
-
22
-
-
85041170336
-
Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state
-
Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Tai W, Du L, Zhou Y, Zhang W, Li F. 2018. Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state. J Virol 92:e01556-17. https://doi.org/10.1128/JVI.01556-17.
-
(2018)
J Virol
, vol.92
, pp. e01556-e01617
-
-
Shang, J.1
Zheng, Y.2
Yang, Y.3
Liu, C.4
Geng, Q.5
Tai, W.6
Du, L.7
Zhou, Y.8
Zhang, W.9
Li, F.10
-
23
-
-
84960090603
-
Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
-
Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJ, DiMaio F, Rey FA, Veesler D. 2016. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531:114–117. https://doi.org/10.1038/ nature16988.
-
(2016)
Nature
, vol.531
, pp. 114-117
-
-
Walls, A.C.1
Tortorici, M.A.2
Bosch, B.J.3
Frenz, B.4
Rottier, P.J.5
DiMaio, F.6
Rey, F.A.7
Veesler, D.8
-
24
-
-
84987652828
-
Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
-
Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, DiMaio F, Bosch BJ, Veesler D. 2016. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 23:899–905. https://doi.org/10.1038/nsmb.3293.
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 899-905
-
-
Walls, A.C.1
Tortorici, M.A.2
Frenz, B.3
Snijder, J.4
Li, W.5
Rey, F.A.6
DiMaio, F.7
Bosch, B.J.8
Veesler, D.9
-
25
-
-
84960173062
-
Pre-fusion structure of a human coronavirus spike protein
-
Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, Corbett KS, Graham BS, McLellan JS, Ward AB. 2016. Pre-fusion structure of a human coronavirus spike protein. Nature 531:118–121. https://doi.org/10.1038/nature17200.
-
(2016)
Nature
, vol.531
, pp. 118-121
-
-
Kirchdoerfer, R.N.1
Cottrell, C.A.2
Wang, N.3
Pallesen, J.4
Yassine, H.M.5
Turner, H.L.6
Corbett, K.S.7
Graham, B.S.8
McLellan, J.S.9
Ward, A.B.10
-
26
-
-
84921664670
-
Receptor recognition mechanisms of coronaviruses: A decade of structural studies
-
Li F. 2015. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89:1954–1964. https://doi.org/10.1128/JVI.02615-14.
-
(2015)
J Virol
, vol.89
, pp. 1954-1964
-
-
Li, F.1
-
27
-
-
0344395657
-
Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
-
Li WH, Moore MJ, Vasilieva N, Sui JH, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450 – 454. https://doi.org/10.1038/nature02145.
-
(2003)
Nature
, vol.426
, pp. 450-454
-
-
Li, W.H.1
Moore, M.J.2
Vasilieva, N.3
Sui, J.H.4
Wong, S.K.5
Berne, M.A.6
Somasundaran, M.7
Sullivan, J.L.8
Luzuriaga, K.9
Greenough, T.C.10
Choe, H.11
Farzan, M.12
-
28
-
-
84874996988
-
Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
-
Raj VS, Mou HH, Smits SL, Dekkers DHW, Muller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottier PJM, Osterhaus A, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–254. https://doi.org/10.1038/nature12005.
-
(2013)
Nature
, vol.495
, pp. 251-254
-
-
Raj, V.S.1
Mou, H.H.2
Smits, S.L.3
Dekkers, D.H.W.4
Muller, M.A.5
Dijkman, R.6
Muth, D.7
Demmers, J.A.A.8
Zaki, A.9
Fouchier, R.A.M.10
Thiel, V.11
Drosten, C.12
Rottier, P.J.M.13
Osterhaus, A.14
Bosch, B.J.15
Haagmans, B.L.16
-
29
-
-
24944498409
-
Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
-
Li F, Li WH, Farzan M, Harrison SC. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309: 1864–1868. https://doi.org/10.1126/science.1116480.
-
(2005)
Science
, vol.309
, pp. 1864-1868
-
-
Li, F.1
Li, W.H.2
Farzan, M.3
Harrison, S.C.4
-
30
-
-
84881479703
-
Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
-
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang B, Shi Y, Yan J, Gao GF. 2013. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500:227–231. https://doi.org/10.1038/nature12328.
-
(2013)
Nature
, vol.500
, pp. 227-231
-
-
Lu, G.1
Hu, Y.2
Wang, Q.3
Qi, J.4
Gao, F.5
Li, Y.6
Zhang, Y.7
Zhang, W.8
Yuan, Y.9
Bao, J.10
Zhang, B.11
Shi, Y.12
Yan, J.13
Gao, G.F.14
-
31
-
-
84871868782
-
Mechanisms of coronavirus cell entry mediated by the viral spike protein
-
Belouzard S, Millet JK, Licitra BN, Whittaker GR. 2012. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4:1011–1033. https://doi.org/10.3390/v4061011.
-
(2012)
Viruses
, vol.4
, pp. 1011-1033
-
-
Belouzard, S.1
Millet, J.K.2
Licitra, B.N.3
Whittaker, G.R.4
-
32
-
-
84860245275
-
Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence
-
Heald-Sargent T, Gallagher T. 2012. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 4:557–580. https://doi.org/10.3390/v4040557.
-
(2012)
Viruses
, vol.4
, pp. 557-580
-
-
Heald-Sargent, T.1
Gallagher, T.2
-
33
-
-
84862908396
-
Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease
-
Bertram S, Glowacka I, Muller MA, Lavender H, Gnirss K, Nehlmeier I, Niemeyer D, He Y, Simmons G, Drosten C, Soilleux EJ, Jahn O, Steffen I, Pohlmann S. 2011. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol 85:13363–13372. https://doi.org/10.1128/JVI.05300-11.
-
(2011)
J Virol
, vol.85
, pp. 13363-13372
-
-
Bertram, S.1
Glowacka, I.2
Muller, M.A.3
Lavender, H.4
Gnirss, K.5
Nehlmeier, I.6
Niemeyer, D.7
He, Y.8
Simmons, G.9
Drosten, C.10
Soilleux, E.J.11
Jahn, O.12
Steffen, I.13
Pohlmann, S.14
-
34
-
-
24644441711
-
Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection
-
Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. 2005. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci U S A 102:12543–12547. https://doi.org/10.1073/pnas.0503203102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 12543-12547
-
-
Matsuyama, S.1
Ujike, M.2
Morikawa, S.3
Tashiro, M.4
Taguchi, F.5
-
35
-
-
70949093997
-
Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro
-
Kam YW, Okumura Y, Kido H, Ng LF, Bruzzone R, Altmeyer R. 2009. Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One 4:e7870. https://doi.org/10.1371/journal.pone.0007870.
-
(2009)
PLoS One
, vol.4
-
-
Kam, Y.W.1
Okumura, Y.2
Kido, H.3
Ng, L.F.4
Bruzzone, R.5
Altmeyer, R.6
-
36
-
-
84887169848
-
Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2
-
Shirato K, Kawase M, Matsuyama S. 2013. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87:12552–12561. https://doi.org/10.1128/JVI.01890-13.
-
(2013)
J Virol
, vol.87
, pp. 12552-12561
-
-
Shirato, K.1
Kawase, M.2
Matsuyama, S.3
-
37
-
-
84924359597
-
Inhibition of proprotein convertases abrogates processing of the Middle Eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity
-
Gierer S, Müller MA, Heurich A, Ritz D, Springstein BL, Karsten CB, Schendzielorz A, Gnirß K, Drosten C, Pöhlmann S. 2015. Inhibition of proprotein convertases abrogates processing of the Middle Eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity. J Infect Dis 211:889–897. https://doi.org/10.1093/infdis/jiu407.
-
(2015)
J Infect Dis
, vol.211
, pp. 889-897
-
-
Gierer, S.1
Müller, M.A.2
Heurich, A.3
Ritz, D.4
Springstein, B.L.5
Karsten, C.B.6
Schendzielorz, A.7
Gnirß, K.8
Drosten, C.9
Pöhlmann, S.10
-
38
-
-
84877339392
-
The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies
-
Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A, Welsch K, Winkler M, Meyer B, Drosten C, Dittmer U, von Hahn T, Simmons G, Hofmann H, Pöhlmann S. 2013. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87:5502–5511. https://doi.org/10.1128/JVI.00128-13.
-
(2013)
J Virol
, vol.87
, pp. 5502-5511
-
-
Gierer, S.1
Bertram, S.2
Kaup, F.3
Wrensch, F.4
Heurich, A.5
Krämer-Kühl, A.6
Welsch, K.7
Winkler, M.8
Meyer, B.9
Drosten, C.10
Dittmer, U.11
von Hahn, T.12
Simmons, G.13
Hofmann, H.14
Pöhlmann, S.15
-
39
-
-
85057258096
-
Lysosomal proteases are a determinant of coronavirus tropism
-
Zheng Y, Shang J, Yang Y, Liu C, Wan Y, Geng Q, Wang M, Baric R, Li F. 2018. Lysosomal proteases are a determinant of coronavirus tropism. J Virol 92:e01504-18. https://doi.org/10.1128/JVI.01504-18.
-
(2018)
J Virol
, vol.92
, pp. e01504-e01518
-
-
Zheng, Y.1
Shang, J.2
Yang, Y.3
Liu, C.4
Wan, Y.5
Geng, Q.6
Wang, M.7
Baric, R.8
Li, F.9
-
40
-
-
85031329007
-
Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion
-
Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, Veesler D. 2017. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A 114: 11157–11162. https://doi.org/10.1073/pnas.1708727114.
-
(2017)
Proc Natl Acad Sci U S A
, vol.114
, pp. 11157-11162
-
-
Walls, A.C.1
Tortorici, M.A.2
Snijder, J.3
Xiong, X.4
Bosch, B.J.5
Rey, F.A.6
Veesler, D.7
-
41
-
-
33745794872
-
Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain
-
Li F, Berardi M, Li WH, Farzan M, Dormitzer PR, Harrison SC. 2006. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol 80:6794–6800. https://doi.org/10.1128/JVI.02744-05.
-
(2006)
J Virol
, vol.80
, pp. 6794-6800
-
-
Li, F.1
Berardi, M.2
Li, W.H.3
Farzan, M.4
Dormitzer, P.R.5
Harrison, S.C.6
-
42
-
-
84906940416
-
Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins
-
Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Liu FT, Liu WT, Chen YM, Huang JC. 2014. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 451:208–214. https://doi.org/10.1016/j.bbrc.2014.07.090.
-
(2014)
Biochem Biophys Res Commun
, vol.451
, pp. 208-214
-
-
Wang, S.F.1
Tseng, S.P.2
Yen, C.H.3
Yang, J.Y.4
Tsao, C.H.5
Shen, C.W.6
Chen, K.H.7
Liu, F.T.8
Liu, W.T.9
Chen, Y.M.10
Huang, J.C.11
-
43
-
-
33845227481
-
Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro
-
Kam YW, Kien F, Roberts A, Cheung YC, Lamirande EW, Vogel L, Chu SL, Tse J, Guarner J, Zaki SR, Subbarao K, Peiris M, Nal B, Altmeyer R. 2007. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. Vaccine 25:729–740. https://doi.org/10.1016/j.vaccine.2006.08.011.
-
(2007)
Vaccine
, vol.25
, pp. 729-740
-
-
Kam, Y.W.1
Kien, F.2
Roberts, A.3
Cheung, Y.C.4
Lamirande, E.W.5
Vogel, L.6
Chu, S.L.7
Tse, J.8
Guarner, J.9
Zaki, S.R.10
Subbarao, K.11
Peiris, M.12
Nal, B.13
Altmeyer, R.14
-
44
-
-
80055012547
-
Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- And cysteine protease-independent FcγR pathway
-
Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, Nal B, Daeron M, Bruzzone R, Peiris JS. 2011. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol 85:10582–10597. https://doi.org/10.1128/JVI.00671-11.
-
(2011)
J Virol
, vol.85
, pp. 10582-10597
-
-
Jaume, M.1
Yip, M.S.2
Cheung, C.Y.3
Leung, H.L.4
Li, P.H.5
Kien, F.6
Dutry, I.7
Callendret, B.8
Escriou, N.9
Altmeyer, R.10
Nal, B.11
Daeron, M.12
Bruzzone, R.13
Peiris, J.S.14
-
45
-
-
0026744774
-
Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus
-
Corapi WV, Olsen CW, Scott FW. 1992. Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus. J Virol 66:6695–6705.
-
(1992)
J Virol
, vol.66
, pp. 6695-6705
-
-
Corapi, W.V.1
Olsen, C.W.2
Scott, F.W.3
-
46
-
-
0031607178
-
Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus
-
Hohdatsu T, Yamada M, Tominaga R, Makino K, Kida K, Koyama H. 1998. Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus. J Vet Med Sci 60:49–55. https://doi.org/10.1292/jvms.60.49.
-
(1998)
J Vet Med Sci
, vol.60
, pp. 49-55
-
-
Hohdatsu, T.1
Yamada, M.2
Tominaga, R.3
Makino, K.4
Kida, K.5
Koyama, H.6
-
47
-
-
0025236544
-
Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization
-
Vennema H, de Groot RJ, Harbour DA, Dalderup M, Gruffydd-Jones T, Horzinek MC, Spaan WJ. 1990. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol 64:1407–1409.
-
(1990)
J Virol
, vol.64
, pp. 1407-1409
-
-
Vennema, H.1
de Groot, R.J.2
Harbour, D.A.3
Dalderup, M.4
Gruffydd-Jones, T.5
Horzinek, M.C.6
Spaan, W.J.7
-
48
-
-
84901303550
-
A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein
-
Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, Tao X, Yu H, Sun S, Tseng CT, Jiang S, Li F, Zhou Y. 2014. A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol 88:7045–7053. https://doi.org/10.1128/JVI.00433-14.
-
(2014)
J Virol
, vol.88
, pp. 7045-7053
-
-
Du, L.1
Zhao, G.2
Yang, Y.3
Qiu, H.4
Wang, L.5
Kou, Z.6
Tao, X.7
Yu, H.8
Sun, S.9
Tseng, C.T.10
Jiang, S.11
Li, F.12
Zhou, Y.13
-
49
-
-
65649110128
-
Antigenicity and immunogenicity of SARS-CoV S protein receptor-binding domain stably expressed in CHO cells
-
Du L, Zhao G, Li L, He Y, Zhou Y, Zheng BJ, Jiang S. 2009. Antigenicity and immunogenicity of SARS-CoV S protein receptor-binding domain stably expressed in CHO cells. Biochem Biophys Res Commun 384: 486–490. https://doi.org/10.1016/j.bbrc.2009.05.003.
-
(2009)
Biochem Biophys Res Commun
, vol.384
, pp. 486-490
-
-
Du, L.1
Zhao, G.2
Li, L.3
He, Y.4
Zhou, Y.5
Zheng, B.J.6
Jiang, S.7
-
50
-
-
17044375920
-
Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies
-
He YX, Lu H, Siddiqui P, Zhou YS, Jiang SB. 2005. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J Immunol 174:4908–4915. https://doi.org/10.4049/jimmunol.174.8.4908.
-
(2005)
J Immunol
, vol.174
, pp. 4908-4915
-
-
He, Y.X.1
Lu, H.2
Siddiqui, P.3
Zhou, Y.S.4
Jiang, S.B.5
-
51
-
-
84908065761
-
Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
-
Millet JK, Whittaker GR. 2014. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 111:15214–15219. https://doi.org/10.1073/pnas.1407087111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 15214-15219
-
-
Millet, J.K.1
Whittaker, G.R.2
-
52
-
-
85061830074
-
Unexpected receptor functional mimicry elucidates activation of coronavirus fusion
-
Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. 2019. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176:1026–1039.e1015. https://doi.org/10.1016/j.cell.2018.12.028.
-
(2019)
Cell
, vol.176
, pp. 1026-1039
-
-
Walls, A.C.1
Xiong, X.2
Park, Y.J.3
Tortorici, M.A.4
Snijder, J.5
Quispe, J.6
Cameroni, E.7
Gopal, R.8
Dai, M.9
Lanzavecchia, A.10
Zambon, M.11
Rey, F.A.12
Corti, D.13
Veesler, D.14
-
53
-
-
84920269464
-
Proteomics. Tissue-based map of the human proteome
-
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F. 2015. Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419.
-
(2015)
Science
, vol.347
, pp. 1260419
-
-
Uhlén, M.1
Fagerberg, L.2
Hallström, B.M.3
Lindskog, C.4
Oksvold, P.5
Mardinoglu, A.6
Sivertsson, Å.7
Kampf, C.8
Sjöstedt, E.9
Asplund, A.10
Olsson, I.11
Edlund, K.12
Lundberg, E.13
Navani, S.14
Szigyarto, C.A.-K.15
Odeberg, J.16
Djureinovic, D.17
Takanen, J.O.18
Hober, S.19
Alm, T.20
Edqvist, P.-H.21
Berling, H.22
Tegel, H.23
Mulder, J.24
Rockberg, J.25
Nilsson, P.26
Schwenk, J.M.27
Hamsten, M.28
von Feilitzen, K.29
Forsberg, M.30
Persson, L.31
Johansson, F.32
Zwahlen, M.33
von Heijne, G.34
Nielsen, J.35
Pontén, F.36
more..
-
54
-
-
29244477844
-
A human protein atlas for normal and cancer tissues based on antibody proteomics
-
Uhlén M, Björling E, Agaton C, Szigyarto CA-K, Amini B, Andersen E, Andersson A-C, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Sköllermo A, Steen J, Stenvall M, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan J, Wernérus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Pontén F. 2005. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4:1920 –1932. https://doi.org/10.1074/mcp.M500279-MCP200.
-
(2005)
Mol Cell Proteomics
, vol.4
, pp. 1920-1932
-
-
Uhlén, M.1
Björling, E.2
Agaton, C.3
Szigyarto, C.A.-K.4
Amini, B.5
Andersen, E.6
Andersson, A.-C.7
Angelidou, P.8
Asplund, A.9
Asplund, C.10
Berglund, L.11
Bergström, K.12
Brumer, H.13
Cerjan, D.14
Ekström, M.15
Elobeid, A.16
Eriksson, C.17
Fagerberg, L.18
Falk, R.19
Fall, J.20
Forsberg, M.21
Björklund, M.G.22
Gumbel, K.23
Halimi, A.24
Hallin, I.25
Hamsten, C.26
Hansson, M.27
Hedhammar, M.28
Hercules, G.29
Kampf, C.30
Larsson, K.31
Lindskog, M.32
Lodewyckx, W.33
Lund, J.34
Lundeberg, J.35
Magnusson, K.36
Malm, E.37
Nilsson, P.38
Odling, J.39
Oksvold, P.40
Olsson, I.41
Oster, E.42
Ottosson, J.43
Paavilainen, L.44
Persson, A.45
Rimini, R.46
Rockberg, J.47
Runeson, M.48
Sivertsson, A.49
Sköllermo, A.50
Steen, J.51
Stenvall, M.52
Sterky, F.53
Strömberg, S.54
Sundberg, M.55
Tegel, H.56
Tourle, S.57
Wahlund, E.58
Waldén, A.59
Wan, J.60
Wernérus, H.61
Westberg, J.62
Wester, K.63
Wrethagen, U.64
Xu, L.L.65
Hober, S.66
Pontén, F.67
more..
-
55
-
-
84975474690
-
Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection
-
Qiu H, Sun S, Xiao H, Feng J, Guo Y, Tai W, Wang Y, Du L, Zhao G, Zhou Y. 2016. Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection. Antiviral Res 132:141–148. https://doi.org/10.1016/j.antiviral.2016.06.003.
-
(2016)
Antiviral Res
, vol.132
, pp. 141-148
-
-
Qiu, H.1
Sun, S.2
Xiao, H.3
Feng, J.4
Guo, Y.5
Tai, W.6
Wang, Y.7
Du, L.8
Zhao, G.9
Zhou, Y.10
-
56
-
-
84928902128
-
Identification of an ADAM17 cleavage region in human CD16 (FcgammaRIII) and the engineering of a non-cleavable version of the receptor in NK cells
-
Jing Y, Ni Z, Wu J, Higgins L, Markowski TW, Kaufman DS, Walcheck B. 2015. Identification of an ADAM17 cleavage region in human CD16 (FcgammaRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One 10:e0121788. https://doi.org/10.1371/journal.pone.0121788.
-
(2015)
PLoS One
, vol.10
-
-
Jing, Y.1
Ni, Z.2
Wu, J.3
Higgins, L.4
Markowski, T.W.5
Kaufman, D.S.6
Walcheck, B.7
-
57
-
-
84938593591
-
M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide
-
Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. 2015. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15:577. https://doi.org/10.1186/s12885-015-1546-9.
-
(2015)
BMC Cancer
, vol.15
, pp. 577
-
-
Genin, M.1
Clement, F.2
Fattaccioli, A.3
Raes, M.4
Michiels, C.5
-
58
-
-
85058883471
-
Expression of a recombinant high affinity IgG Fc receptor by engineered NK cells as a docking platform for therapeutic mAbs to target cancer cells
-
Snyder KM, Hullsiek R, Mishra HK, Mendez DC, Li Y, Rogich A, Kaufman DS, Wu J, Walcheck B. 2018. Expression of a recombinant high affinity IgG Fc receptor by engineered NK cells as a docking platform for therapeutic mAbs to target cancer cells. Front Immunol 9:2873. https:// doi.org/10.3389/fimmu.2018.02873.
-
(2018)
Front Immunol
, vol.9
, pp. 2873
-
-
Snyder, K.M.1
Hullsiek, R.2
Mishra, H.K.3
Mendez, D.C.4
Li, Y.5
Rogich, A.6
Kaufman, D.S.7
Wu, J.8
Walcheck, B.9
-
59
-
-
2442679050
-
A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function
-
Su K, Li X, Edberg JC, Wu J, Ferguson P, Kimberly RP. 2004. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. J Immunol 172:7192–7199. https://doi.org/10.4049/jimmunol.172.11.7192.
-
(2004)
J Immunol
, vol.172
, pp. 7192-7199
-
-
Su, K.1
Li, X.2
Edberg, J.C.3
Wu, J.4
Ferguson, P.5
Kimberly, R.P.6
-
60
-
-
84996844201
-
Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines
-
Du L, Tai W, Yang Y, Zhao G, Zhu Q, Sun S, Liu C, Tao X, Tseng CK, Perlman S, Jiang S, Zhou Y, Li F. 2016. Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. Nat Commun 7:13473. https://doi.org/10.1038/ncomms13473.
-
(2016)
Nat Commun
, vol.7
, pp. 13473
-
-
Du, L.1
Tai, W.2
Yang, Y.3
Zhao, G.4
Zhu, Q.5
Sun, S.6
Liu, C.7
Tao, X.8
Tseng, C.K.9
Perlman, S.10
Jiang, S.11
Zhou, Y.12
Li, F.13
-
61
-
-
84929648712
-
Receptor usage and cell entry of porcine epidemic diarrhea coronavirus
-
Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F. 2015. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol 89:6121–6125. https://doi.org/10.1128/JVI.00430-15.
-
(2015)
J Virol
, vol.89
, pp. 6121-6125
-
-
Liu, C.1
Tang, J.2
Ma, Y.3
Liang, X.4
Yang, Y.5
Peng, G.6
Qi, Q.7
Jiang, S.8
Li, J.9
Du, L.10
Li, F.11
-
62
-
-
84906658079
-
Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus
-
Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. 2014. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc Natl Acad Sci U S A 111:12516–12521. https://doi.org/10.1073/pnas.1405889111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 12516-12521
-
-
Yang, Y.1
Du, L.2
Liu, C.3
Wang, L.4
Ma, C.5
Tang, J.6
Baric, R.S.7
Jiang, S.8
Li, F.9
-
63
-
-
84995747398
-
Cell entry of porcine epidemic diarrhea coronavirus is activated by lysosomal proteases
-
Liu C, Ma Y, Yang Y, Zheng Y, Shang J, Zhou Y, Jiang S, Du L, Li J, Li F. 2016. Cell entry of porcine epidemic diarrhea coronavirus is activated by lysosomal proteases. J Biol Chem 291:24779–24786. https://doi.org/10.1074/jbc.M116.740746.
-
(2016)
J Biol Chem
, vol.291
, pp. 24779-24786
-
-
Liu, C.1
Ma, Y.2
Yang, Y.3
Zheng, Y.4
Shang, J.5
Zhou, Y.6
Jiang, S.7
Du, L.8
Li, J.9
Li, F.10
-
64
-
-
84886007720
-
Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus
-
Chen Y, Rajashankar KR, Yang Y, Agnihothram SS, Liu C, Lin YL, Baric RS, Li F. 2013. Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus. J Virol 87: 10777–10783. https://doi.org/10.1128/JVI.01756-13.
-
(2013)
J Virol
, vol.87
, pp. 10777-10783
-
-
Chen, Y.1
Rajashankar, K.R.2
Yang, Y.3
Agnihothram, S.S.4
Liu, C.5
Lin, Y.L.6
Baric, R.S.7
Li, F.8
|