-
1
-
-
79956054956
-
Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
-
COI: 1:CAS:528:DC%2BC3MXlslylsLk%3D, PID: 21566184
-
Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).
-
(2011)
Science
, vol.332
, pp. 805-809
-
-
Blankenship, R.E.1
-
3
-
-
85030627874
-
2 conversion?
-
COI: 1:CAS:528:DC%2BC2sXhsVejtbfJ, PID: 28825736
-
2 conversion? Chem. Soc. Rev. 46, 5805–5863 (2017).
-
(2017)
Chem. Soc. Rev.
, vol.46
, pp. 5805-5863
-
-
Snoeckx, R.1
Bogaerts, A.2
-
4
-
-
79952636856
-
Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity
-
COI: 1:CAS:528:DC%2BC3cXhtFygu7fM
-
Zhang, Q., Kang, J. & Wang, Y. Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem 2, 1030–1058 (2010).
-
(2010)
ChemCatChem
, vol.2
, pp. 1030-1058
-
-
Zhang, Q.1
Kang, J.2
Wang, Y.3
-
6
-
-
84979021063
-
The formate bio-economy
-
COI: 1:CAS:528:DC%2BC28Xht1CksL%2FL, PID: 27459678
-
Yishai, O., Lindner, S. N., Gonzalez de la Cruz, J., Tenenboim, H. & Bar-Even, A. The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).
-
(2016)
Curr. Opin. Chem. Biol.
, vol.35
, pp. 1-9
-
-
Yishai, O.1
Lindner, S.N.2
Gonzalez de la Cruz, J.3
Tenenboim, H.4
Bar-Even, A.5
-
7
-
-
85042906790
-
2: a techno-economic and environmental evaluation
-
COI: 1:CAS:528:DC%2BC1cXjvFWksLw%3D
-
2: a techno-economic and environmental evaluation. J. CO2 Util. 24, 555–563 (2018).
-
(2018)
J. CO2 Util.
, vol.24
, pp. 555-563
-
-
Szima, S.1
Cormos, C.C.2
-
8
-
-
84951201644
-
Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria
-
PID: 26692897
-
Bertsch, J. & Muller, V. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol. Biofuels 8, 210 (2015).
-
(2015)
Biotechnol. Biofuels
, vol.8
-
-
Bertsch, J.1
Muller, V.2
-
9
-
-
85036471562
-
Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs
-
PID: 29216497
-
Bennett, R. K., Steinberg, L. M., Chen, W. & Papoutsakis, E. T. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50, 81–93 (2017).
-
(2017)
Curr. Opin. Biotechnol.
, vol.50
, pp. 81-93
-
-
Bennett, R.K.1
Steinberg, L.M.2
Chen, W.3
Papoutsakis, E.T.4
-
10
-
-
84922433192
-
Engineering Escherichia coli for methanol conversion
-
COI: 1:CAS:528:DC%2BC2MXhtlWhtLc%3D, PID: 25596507
-
Muller, J. E. et al. Engineering Escherichia coli for methanol conversion. Metab. Eng. 28, 190–201 (2015).
-
(2015)
Metab. Eng.
, vol.28
, pp. 190-201
-
-
Muller, J.E.1
-
11
-
-
85019947047
-
Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC2sXotlWmsrw%3D, PID: 28554521
-
Dai, Z. et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresour. Technol. 245, 1407–1412 (2017).
-
(2017)
Bioresour. Technol.
, vol.245
, pp. 1407-1412
-
-
Dai, Z.1
-
12
-
-
85054089047
-
2 to two-carbon compounds
-
PID: 30266898
-
2 to two-carbon compounds. Nat. Commun. 9, 3992 (2018).
-
(2018)
Nat. Commun.
, vol.9
-
-
Yu, H.1
Liao, J.C.2
-
13
-
-
85045762472
-
Methanol-essential growth of Escherichia coli
-
PID: 29666370
-
Meyer, F. et al. Methanol-essential growth of Escherichia coli. Nat. Commun. 9, 1508 (2018).
-
(2018)
Nat. Commun.
, vol.9
-
-
Meyer, F.1
-
14
-
-
85048767853
-
Improving formaldehyde consumption drives methanol assimilation in engineered E. coli
-
PID: 29921903
-
Woolston, B. M., King, J. R., Reiter, M., Van Hove, B. & Stephanopoulos, G. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nat. Commun. 9, 2387 (2018).
-
(2018)
Nat. Commun.
, vol.9
-
-
Woolston, B.M.1
King, J.R.2
Reiter, M.3
Van Hove, B.4
Stephanopoulos, G.5
-
15
-
-
85036654608
-
Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph
-
PID: 29203223
-
Bennett, R. K., Gonzalez, J. E., Whitaker, W. B., Antoniewicz, M. R. & Papoutsakis, E. T. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metab. Eng. 45, 75–85 (2017).
-
(2017)
Metab. Eng.
, vol.45
, pp. 75-85
-
-
Bennett, R.K.1
Gonzalez, J.E.2
Whitaker, W.B.3
Antoniewicz, M.R.4
Papoutsakis, E.T.5
-
16
-
-
85036624330
-
Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein
-
PID: 29203222
-
Gonzalez, J., Bennett, R. K., Papoutsakis, E. T. & Antoniewicz, M. R. Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein. Metab. Eng. 45, 67–74 (2017).
-
(2017)
Metab. Eng.
, vol.45
, pp. 67-74
-
-
Gonzalez, J.1
Bennett, R.K.2
Papoutsakis, E.T.3
Antoniewicz, M.R.4
-
17
-
-
85027549431
-
Sort-Seq approach to engineering a formaldehyde-inducible promoter for dynamically regulated Escherichia coli growth on methanol
-
COI: 1:CAS:528:DC%2BC2sXmvFSjuro%3D, PID: 28463494
-
Rohlhill, J., Sandoval, N. R. & Papoutsakis, E. T. Sort-Seq approach to engineering a formaldehyde-inducible promoter for dynamically regulated Escherichia coli growth on methanol. ACS Synth. Biol. 6, 1584–1595 (2017).
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 1584-1595
-
-
Rohlhill, J.1
Sandoval, N.R.2
Papoutsakis, E.T.3
-
18
-
-
85032905922
-
Development of a formaldehyde biosensor with application to synthetic methylotrophy
-
COI: 1:CAS:528:DC%2BC2sXhslGgsLvI, PID: 28921510
-
Woolston, B. M., Roth, T., Kohale, I., Liu, D. R. & Stephanopoulos, G. Development of a formaldehyde biosensor with application to synthetic methylotrophy. Biotechnol. Bioeng. 115, 206–215 (2018).
-
(2018)
Biotechnol. Bioeng.
, vol.115
, pp. 206-215
-
-
Woolston, B.M.1
Roth, T.2
Kohale, I.3
Liu, D.R.4
Stephanopoulos, G.5
-
19
-
-
84992321320
-
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
-
COI: 1:CAS:528:DC%2BC28XhvVGgt7rL, PID: 27815193
-
Whitaker, W. B. et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab. Eng. 39, 49–59 (2017).
-
(2017)
Metab. Eng.
, vol.39
, pp. 49-59
-
-
Whitaker, W.B.1
-
20
-
-
85063511403
-
Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design
-
PID: 30914637
-
Lu, X. et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat. Commun. 10, 1378 (2019).
-
(2019)
Nat. Commun.
, vol.10
-
-
Lu, X.1
-
21
-
-
85041490409
-
Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway
-
Wang, X. et al. Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresour. Bioprocess. 4, 41–46 (2017).
-
(2017)
Bioresour. Bioprocess.
, vol.4
, pp. 41-46
-
-
Wang, X.1
-
23
-
-
33746916074
-
Acetogenic Prokaryotes
-
Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt, Springer
-
Drake, H. L., Kirsten, K. & Matthies, C. Acetogenic Prokaryotes. in The Prokaryotes (eds., Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt) 354–420 (Springer, 2006).
-
(2006)
The Prokaryotes
, pp. 354-420
-
-
Drake, H.L.1
Kirsten, K.2
Matthies, C.3
-
24
-
-
84884301231
-
Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes
-
COI: 1:CAS:528:DC%2BC38Xhs1KqsrjF, PID: 23123556
-
Bar-Even, A., Noor, E., Flamholz, A. & Milo, R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim. Biophys. Acta 1827, 1039–1047 (2013).
-
(2013)
Biochim. Biophys. Acta
, vol.1827
, pp. 1039-1047
-
-
Bar-Even, A.1
Noor, E.2
Flamholz, A.3
Milo, R.4
-
25
-
-
84872114860
-
Does acetogenesis really require especially low reduction potential?
-
COI: 1:CAS:528:DC%2BC3sXitlensrs%3D, PID: 23103387
-
Bar-Even, A. Does acetogenesis really require especially low reduction potential? Biochim. Biophys. Acta 1827, 395–400 (2013).
-
(2013)
Biochim. Biophys. Acta
, vol.1827
, pp. 395-400
-
-
Bar-Even, A.1
-
26
-
-
84895727036
-
Pathway thermodynamics highlights kinetic obstacles in central metabolism
-
PID: 24586134
-
Noor, E. et al. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput. Biol. 10, e1003483 (2014).
-
(2014)
PLoS Comput. Biol.
, vol.10
-
-
Noor, E.1
-
27
-
-
85040175396
-
2 fixation pathway
-
COI: 1:CAS:528:DC%2BC2sXhvVOrtrfI, PID: 29183985
-
2 fixation pathway. Proc. Natl Acad. Sci. USA 115, E92–E101 (2018).
-
(2018)
Proc. Natl Acad. Sci. USA
, vol.115
, pp. E92-E101
-
-
Figueroa, I.A.1
-
28
-
-
0014004734
-
A new reaction for glycine biosynthesis
-
COI: 1:CAS:528:DyaF28Xkt1ajsr0%3D, PID: 5960854
-
Kawasaki, H., Sato, T. & Kikuchi, G. A new reaction for glycine biosynthesis. Biochem. Biophys. Res. Commun. 23, 227–233 (1966).
-
(1966)
Biochem. Biophys. Res. Commun.
, vol.23
, pp. 227-233
-
-
Kawasaki, H.1
Sato, T.2
Kikuchi, G.3
-
29
-
-
0016265459
-
Glycine metabolism by rat liver mitochondria. Reconstruction of the reversible glycine cleavage system with partially purified protein components
-
COI: 1:CAS:528:DyaE2MXht1ynuw%3D%3D, PID: 4460882
-
Motokawa, Y. & Kikuchi, G. Glycine metabolism by rat liver mitochondria. Reconstruction of the reversible glycine cleavage system with partially purified protein components. Arch. Biochem. Biophys. 164, 624–633 (1974).
-
(1974)
Arch. Biochem. Biophys.
, vol.164
, pp. 624-633
-
-
Motokawa, Y.1
Kikuchi, G.2
-
30
-
-
0026611611
-
13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DyaK38XlsVKru7s%3D, PID: 1390656
-
13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Biochemistry 31, 8713–8719 (1992).
-
(1992)
Biochemistry
, vol.31
, pp. 8713-8719
-
-
Pasternack, L.B.1
Laude, D.A.2
Appling, D.R.3
-
32
-
-
85047392973
-
In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli
-
PID: 29763299
-
Yishai, O., Bouzon, M., Doring, V. & Bar-Even, A. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth. Biol. 7, 2023–2028 (2018).
-
(2018)
ACS Synth. Biol.
, vol.7
, pp. 2023-2028
-
-
Yishai, O.1
Bouzon, M.2
Doring, V.3
Bar-Even, A.4
-
33
-
-
47249109471
-
Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1
-
COI: 1:CAS:528:DC%2BD1cXosFWktbk%3D, PID: 18502865
-
Crowther, G. J., Kosaly, G. & Lidstrom, M. E. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J. Bacteriol. 190, 5057–5062 (2008).
-
(2008)
J. Bacteriol.
, vol.190
, pp. 5057-5062
-
-
Crowther, G.J.1
Kosaly, G.2
Lidstrom, M.E.3
-
34
-
-
11144247396
-
Catalytic mechanism and application of formate dehydrogenase
-
COI: 1:CAS:528:DC%2BD2MXhtVWjs7g%3D
-
Tishkov, V. I. & Popov, V. O. Catalytic mechanism and application of formate dehydrogenase. Biochem. (Mosc.) 69, 1252–1267 (2004).
-
(2004)
Biochem. (Mosc.)
, vol.69
, pp. 1252-1267
-
-
Tishkov, V.I.1
Popov, V.O.2
-
35
-
-
85050861750
-
An engineering approach for rewiring microbial metabolism
-
PID: 30173769
-
Wenk, S., Yishai, O., Lindner, S. N. & Bar-Even, A. An engineering approach for rewiring microbial metabolism. Methods Enzymol. 608, 329–367 (2018).
-
(2018)
Methods Enzymol.
, vol.608
, pp. 329-367
-
-
Wenk, S.1
Yishai, O.2
Lindner, S.N.3
Bar-Even, A.4
-
36
-
-
84978492675
-
Rapid and efficient one-step metabolic pathway integration in E. coli
-
COI: 1:CAS:528:DC%2BC28XlvVaitbw%3D, PID: 27072506
-
Bassalo, M. C. et al. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth. Biol. 5, 561–568 (2016).
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 561-568
-
-
Bassalo, M.C.1
-
37
-
-
85075382914
-
2
-
COI: 1:CAS:528:DC%2BC1MXit12ksbfM, PID: 31778652
-
2. Cell 179, 1255–1263.e12 (2019).
-
(2019)
Cell
, vol.179
, pp. 1255-1263.e12
-
-
Gleizer, S.1
-
38
-
-
85066465278
-
Making quantitative sense of electromicrobial production
-
COI: 1:CAS:528:DC%2BC1MXpvVyqsrk%3D
-
Claassens, N. J., Cotton, C. A., Kopljar, D. & Bar-Even, A. Making quantitative sense of electromicrobial production. Nat. Catal. 2, 437 (2019).
-
(2019)
Nat. Catal.
, vol.2
, pp. 437
-
-
Claassens, N.J.1
Cotton, C.A.2
Kopljar, D.3
Bar-Even, A.4
-
39
-
-
0016776212
-
Formate as an inhibitor of cytochrome c oxidase
-
COI: 1:CAS:528:DyaE28XhsVSitw%3D%3D, PID: 1020
-
Nicholls, P. Formate as an inhibitor of cytochrome c oxidase. Biochem. Biophys. Res. Commun. 67, 610–616 (1975).
-
(1975)
Biochem. Biophys. Res. Commun.
, vol.67
, pp. 610-616
-
-
Nicholls, P.1
-
40
-
-
26944440137
-
Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications
-
Warnecke, T. & Gill, R. T. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Micro. Cell Fact. 4, 25 (2005).
-
(2005)
Micro. Cell Fact.
, vol.4
, pp. 25
-
-
Warnecke, T.1
Gill, R.T.2
-
41
-
-
84879489028
-
Adaptive laboratory evolution—principles and applications for biotechnology
-
Dragosits, M. & Mattanovich, D. Adaptive laboratory evolution—principles and applications for biotechnology. Micro. Cell Fact. 12, 64 (2013).
-
(2013)
Micro. Cell Fact.
, vol.12
, pp. 64
-
-
Dragosits, M.1
Mattanovich, D.2
-
42
-
-
85044837901
-
Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate
-
PID: 29584733
-
Wytock, T. P. et al. Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate. PLoS Genet. 14, e1007284 (2018).
-
(2018)
PLoS Genet.
, vol.14
-
-
Wytock, T.P.1
-
43
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
COI: 1:CAS:528:DC%2BD1MXovFymtb4%3D, PID: 19633652
-
Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).
-
(2009)
Nature
, vol.460
, pp. 894-898
-
-
Wang, H.H.1
-
44
-
-
0030823068
-
Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza
-
COI: 1:CAS:528:DyaK2sXmsFCgurc%3D, PID: 9333139
-
Gutheil, W. G., Kasimoglu, E. & Nicholson, P. C. Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza. Biochem. Biophys. Res. Commun. 238, 693–696 (1997).
-
(1997)
Biochem. Biophys. Res. Commun.
, vol.238
, pp. 693-696
-
-
Gutheil, W.G.1
Kasimoglu, E.2
Nicholson, P.C.3
-
45
-
-
34648830898
-
Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R
-
COI: 1:CAS:528:DC%2BD2sXhtVGmtrfF, PID: 17646983
-
Kotrbova-Kozak, A., Kotrba, P., Inui, M., Sajdok, J. & Yukawa, H. Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl. Microbiol. Biotechnol. 76, 1347–1356 (2007).
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.76
, pp. 1347-1356
-
-
Kotrbova-Kozak, A.1
Kotrba, P.2
Inui, M.3
Sajdok, J.4
Yukawa, H.5
-
46
-
-
84957595673
-
Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1
-
COI: 1:CAS:528:DC%2BC28Xit1Oht7g%3D, PID: 26846745
-
Wu, T. Y. et al. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Appl. Microbiol. Biotechnol. 100, 4969–4983 (2016).
-
(2016)
Appl. Microbiol. Biotechnol.
, vol.100
, pp. 4969-4983
-
-
Wu, T.Y.1
-
47
-
-
85064645919
-
Phage-assisted evolution of Bacillus methanolicus methanol dehydrogenase 2
-
COI: 1:CAS:528:DC%2BC1MXksFegtb8%3D, PID: 30856338
-
Roth, T. B., Woolston, B. M., Stephanopoulos, G. & Liu, D. R. Phage-assisted evolution of Bacillus methanolicus methanol dehydrogenase 2. ACS Synth. Biol. 8, 796–806 (2019).
-
(2019)
ACS Synth. Biol.
, vol.8
, pp. 796-806
-
-
Roth, T.B.1
Woolston, B.M.2
Stephanopoulos, G.3
Liu, D.R.4
-
48
-
-
84887102191
-
Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa
-
COI: 1:CAS:528:DC%2BC3sXhslGmurjL, PID: 24125754
-
Zhang, W. et al. Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa. Protein Expr. Purif. 92, 208–213 (2013).
-
(2013)
Protein Expr. Purif.
, vol.92
, pp. 208-213
-
-
Zhang, W.1
-
49
-
-
85074689741
-
Renewable methanol and formate as microbial feedstocks
-
COI: 1:CAS:528:DC%2BC1MXitFWjsrjM
-
Cotton, C. A., Claassens, N. J., Benito-Vaquerizo, S. & Bar-Even, A. Renewable methanol and formate as microbial feedstocks. Curr. Opin. Biotechnol. 62, 168–180 (2020).
-
(2020)
Curr. Opin. Biotechnol.
, vol.62
, pp. 168-180
-
-
Cotton, C.A.1
Claassens, N.J.2
Benito-Vaquerizo, S.3
Bar-Even, A.4
-
50
-
-
64549143788
-
An improved Escherichia coli donor strain for diparental mating
-
COI: 1:CAS:528:DC%2BD1MXmtFalsLk%3D, PID: 19431232
-
Thoma, S. & Schobert, M. An improved Escherichia coli donor strain for diparental mating. FEMS Microbiol. Lett. 294, 127–132 (2009).
-
(2009)
FEMS Microbiol. Lett.
, vol.294
, pp. 127-132
-
-
Thoma, S.1
Schobert, M.2
-
52
-
-
31544450286
-
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection
-
PID: 16738554
-
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006–2008 (2006).
-
(2006)
Mol. Syst. Biol.
, vol.2
, pp. 2006-2008
-
-
Baba, T.1
-
53
-
-
84959418965
-
A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species
-
COI: 1:CAS:528:DC%2BC28XisFyjs7w%3D, PID: 26884157
-
Nyerges, A. et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc. Natl Acad. Sci. USA 113, 2502–2507 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 2502-2507
-
-
Nyerges, A.1
-
54
-
-
84877292750
-
Spanning high-dimensional expression space using ribosome-binding site combinatorics
-
COI: 1:CAS:528:DC%2BC3sXntVyjs7o%3D, PID: 23470993
-
Zelcbuch, L. et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res. 41, e98 (2013).
-
(2013)
Nucleic Acids Res.
, vol.41
-
-
Zelcbuch, L.1
-
56
-
-
54349084011
-
Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning
-
COI: 1:CAS:528:DC%2BD1cXhtFCqsrzJ, PID: 18778259
-
Braatsch, S., Helmark, S., Kranz, H., Koebmann, B. & Jensen, P. R. Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning. Biotechniques 45, 335–337 (2008).
-
(2008)
Biotechniques
, vol.45
, pp. 335-337
-
-
Braatsch, S.1
Helmark, S.2
Kranz, H.3
Koebmann, B.4
Jensen, P.R.5
-
57
-
-
80054061389
-
34S isotope labelling, in combination with high‐resolution mass spectrometry
-
COI: 1:CAS:528:DC%2BC3MXhsVCksrvJ, PID: 21699588
-
34S isotope labelling, in combination with high‐resolution mass spectrometry. Plant J. 68, 364–376 (2011).
-
(2011)
Plant J.
, vol.68
, pp. 364-376
-
-
Giavalisco, P.1
-
58
-
-
84975801510
-
Microbial surface displaying formate dehydrogenase and its application in optical detection of formate
-
COI: 1:CAS:528:DC%2BC28XhtVGiurrN
-
Liu, A., Feng, R. & Liang, B. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate. Enzym. Microb. Technol. 91, 59–65 (2016).
-
(2016)
Enzym. Microb. Technol.
, vol.91
, pp. 59-65
-
-
Liu, A.1
Feng, R.2
Liang, B.3
-
59
-
-
0035710746
-
− ΔΔCT method
-
COI: 1:CAS:528:DC%2BD38XhtFelt7s%3D, PID: 11846609
-
− ΔΔCT method. Methods 25, 402–408 (2001).
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
60
-
-
79955009094
-
Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR
-
COI: 1:CAS:528:DC%2BC3MXlsVOmtrg%3D, PID: 21513543
-
Zhou, K. et al. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol. Biol. 12, 18 (2011).
-
(2011)
BMC Mol. Biol.
, vol.12
-
-
Zhou, K.1
|