메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Learning representations and generative models for 3D point clouds

Author keywords

[No Author keywords available]

Indexed keywords

ALGEBRA; OBJECT RECOGNITION; SEMANTICS;

EID: 85083951011     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (963)

References (45)
  • 1
    • 85031915103 scopus 로고    scopus 로고
    • Towards principled methods for training generative adversarial networks
    • review for ICLR, 2017
    • Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. In NIPS 2016 Workshop on Adversarial Training. In review for ICLR, volume 2016, 2017.
    • (2016) NIPS 2016 Workshop on Adversarial Training
    • Arjovsky, M.1    Bottou, L.2
  • 4
    • 85027969684 scopus 로고    scopus 로고
    • Generative and discriminative voxel modeling with convolutional neural networks
    • André Brock, Theodore Lim, James M. Ritchie, and Nick Weston. Generative and discriminative voxel modeling with convolutional neural networks. CoRR, 2016.
    • (2016) CoRR
    • Brock, A.1    Lim, T.2    Ritchie, J.M.3    Weston, N.4
  • 5
    • 85034859380 scopus 로고    scopus 로고
    • Spectral networks and locally connected networks on graphs
    • abs/1312.6203
    • Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs. CoRR, abs/1312.6203, 2013.
    • (2013) CoRR
    • Bruna, J.1    Zaremba, W.2    Szlam, A.3    LeCun, Y.4
  • 12
    • 85051489785 scopus 로고    scopus 로고
    • A point set generation network for 3d object reconstruction from a single image
    • abs/1612.00603
    • Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object reconstruction from a single image. CoRR, abs/1612.00603, 2016.
    • (2016) CoRR
    • Fan, H.1    Su, H.2    Guibas, L.J.3
  • 14
  • 18
    • 85040229979 scopus 로고    scopus 로고
    • Deep convolutional networks on graph-structured data
    • Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data. CoRR, 2015.
    • (2015) CoRR
    • Henaff, M.1    Bruna, J.2    LeCun, Y.3
  • 19
    • 85055683731 scopus 로고    scopus 로고
    • 3D shape segmentation with projective convolutional networks
    • abs/1612.02808
    • Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 3d shape segmentation with projective convolutional networks. CoRR, abs/1612.02808, 2016.
    • (2016) CoRR
    • Kalogerakis, E.1    Averkiou, M.2    Maji, S.3    Chaudhuri, S.4
  • 21
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • abs/1412.6980
    • Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
    • (2014) CoRR
    • Kingma, D.P.1    Ba, J.2
  • 26
    • 85010966298 scopus 로고    scopus 로고
    • Stacked convolutional autoencoders for surface recognition based on 3d point cloud data
    • Maierdan Maimaitimin, Keigo Watanabe, and Shoichi Maeyama. Stacked convolutional autoencoders for surface recognition based on 3d point cloud data. Artificial Life and Robotics, pp. 1–6, 2017. ISSN 1614-7456. doi: 10.1007/s10015-017-0350-9.
    • (2017) Artificial Life and Robotics , pp. 1-6
    • Maimaitimin, M.1    Watanabe, K.2    Maeyama, S.3
  • 28
    • 84986309307 scopus 로고    scopus 로고
    • Volumetric and multi-view cnns for object classification on 3d data
    • Las Vegas, NV, USA, June 27-30
    • Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J. Guibas. Volumetric and multi-view cnns for object classification on 3d data. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 5648–5656, 2016b. doi: 10.1109/CVPR.2016.609.
    • (2016) IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 , vol.2016 , pp. 5648-5656
    • Qi, C.R.1    Su, H.2    Nießner, M.3    Dai, A.4    Yan, M.5    Guibas, L.J.6
  • 29
    • 85057270305 scopus 로고    scopus 로고
    • PointNet++: Deep hierarchical feature learning on point sets in a metric space
    • abs/1706.02413
    • Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. CoRR, abs/1706.02413, 2017.
    • (2017) CoRR
    • Qi, C.R.1    Yi, L.2    Su, H.3    Guibas, L.J.4
  • 31
    • 0034313871 scopus 로고    scopus 로고
    • The earth mover’s distance as a metric for image retrieval
    • Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, (2):99–121, 2000. ISSN 1573-1405. doi: 10.1023/A:1026543900054.
    • (2000) International Journal of Computer Vision , Issue.2 , pp. 99-121
    • Rubner, Y.1    Tomasi, C.2    Guibas, L.J.3
  • 32
    • 84921817164 scopus 로고
    • Learning representations by back-propagating errors
    • David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.
    • (1988) Cognitive Modeling , vol.5 , Issue.3 , pp. 1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 84880792116 scopus 로고    scopus 로고
    • Map-based exploration of intrinsic shape differences and variability
    • July
    • Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Leonidas Guibas. Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph., 32(4):72:1–72:12, July 2013. ISSN 0730-0301. doi: 10.1145/2461912.2461959.
    • (2013) ACM Trans. Graph. , vol.32 , Issue.4 , pp. 7201-7212
    • Rustamov, R.M.1    Ovsjanikov, M.2    Azencot, O.3    Ben-Chen, M.4    Chazal, F.5    Guibas, L.6
  • 39
    • 84949650401 scopus 로고    scopus 로고
    • An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning
    • Yueqing Wang, Zhige Xie, Kai Xu, Yong Dou, and Yuanwu Lei. An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning. Neurocomputing, 174:988–998, 2016.
    • (2016) Neurocomputing , vol.174 , pp. 988-998
    • Wang, Y.1    Xie, Z.2    Xu, K.3    Dou, Y.4    Lei, Y.5
  • 41
    • 85016159876 scopus 로고    scopus 로고
    • Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling
    • D. D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett eds, Curran Associates, Inc
    • Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 82–90. Curran Associates, Inc., 2016.
    • (2016) Advances in Neural Information Processing Systems , vol.29 , pp. 82-90
    • Wu, J.1    Zhang, C.2    Xue, T.3    Freeman, B.4    Tenenbaum, J.5
  • 44
    • 85057277369 scopus 로고    scopus 로고
    • SyncspecCNN: Synchronized spectral CNN for 3d shape segmentation
    • Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. Syncspeccnn: Synchronized spectral CNN for 3d shape segmentation. CoRR, 2016b.
    • (2016) CoRR
    • Yi, L.1    Su, H.2    Guo, X.3    Guibas, L.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.