-
1
-
-
85031915103
-
Towards principled methods for training generative adversarial networks
-
review for ICLR, 2017
-
Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. In NIPS 2016 Workshop on Adversarial Training. In review for ICLR, volume 2016, 2017.
-
(2016)
NIPS 2016 Workshop on Adversarial Training
-
-
Arjovsky, M.1
Bottou, L.2
-
2
-
-
80051965277
-
-
AK Peters
-
Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Br uno Levy. Polygon Mesh Processing. AK Peters, 2010. ISBN 978-1-56881-426-1.
-
(2010)
Polygon Mesh Processing
-
-
Botsch, M.1
Kobbelt, L.2
Pauly, M.3
Alliez, P.4
Levy, B.U.5
-
3
-
-
84998888548
-
-
Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.
-
(2015)
Generating Sentences from A Continuous Space
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Jozefowicz, R.5
Bengio, S.6
-
4
-
-
85027969684
-
Generative and discriminative voxel modeling with convolutional neural networks
-
André Brock, Theodore Lim, James M. Ritchie, and Nick Weston. Generative and discriminative voxel modeling with convolutional neural networks. CoRR, 2016.
-
(2016)
CoRR
-
-
Brock, A.1
Lim, T.2
Ritchie, J.M.3
Weston, N.4
-
5
-
-
85034859380
-
Spectral networks and locally connected networks on graphs
-
abs/1312.6203
-
Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs. CoRR, abs/1312.6203, 2013.
-
(2013)
CoRR
-
-
Bruna, J.1
Zaremba, W.2
Szlam, A.3
LeCun, Y.4
-
6
-
-
85009774018
-
ShapeNet: An information-rich 3d model repository
-
abs/1512.03012
-
Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich 3d model repository. CoRR, abs/1512.03012, 2015.
-
(2015)
CoRR
-
-
Chang, A.X.1
Funkhouser, T.A.2
Guibas, L.J.3
Hanrahan, P.4
Huang, Q.-X.5
Li, Z.6
Savarese, S.7
Savva, M.8
Song, S.9
Su, H.10
Xiao, J.11
Yi, L.12
Yu, F.13
-
7
-
-
85041920050
-
-
Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized generative adversarial networks. arXiv preprint arXiv:1612.02136, 2016.
-
(2016)
Mode Regularized Generative Adversarial Networks
-
-
Che, T.1
Li, Y.2
Jacob, A.P.3
Bengio, Y.4
Li, W.5
-
9
-
-
85019257780
-
Convolutional neural networks on graphs with fast localized spectral filtering
-
December 5-10, 2016, Barcelona, Spain
-
Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3837–3845, 2016.
-
(2016)
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016
, pp. 3837-3845
-
-
Defferrard, M.1
Bresson, X.2
Vandergheynst, P.3
-
11
-
-
85031918934
-
-
Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Salimbeni, Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648, 2016.
-
(2016)
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
-
-
Dilokthanakul, N.1
Mediano, P.A.M.2
Garnelo, M.3
Lee, M.C.H.4
Salimbeni, H.5
Arulkumaran, K.6
Shanahan, M.7
-
12
-
-
85051489785
-
A point set generation network for 3d object reconstruction from a single image
-
abs/1612.00603
-
Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object reconstruction from a single image. CoRR, abs/1612.00603, 2016.
-
(2016)
CoRR
-
-
Fan, H.1
Su, H.2
Guibas, L.J.3
-
13
-
-
84990019747
-
-
Springer International Publishing, Cham
-
Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a Predictable and Generative Vector Representation for Objects, pp. 484–499. Springer International Publishing, Cham, 2016a. ISBN 978-3-319-46466-4. doi: 10.1007/978-3-319-46466-4_29.
-
(2016)
Learning A Predictable and Generative Vector Representation for Objects
, pp. 484-499
-
-
Girdhar, R.1
Fouhey, D.F.2
Rodriguez, M.3
Gupta, A.4
-
14
-
-
84990019747
-
Learning a predictable and generative vector representation for objects
-
Springer
-
Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable and generative vector representation for objects. In European Conference on Computer Vision, pp. 484–499. Springer, 2016b.
-
(2016)
European Conference on Computer Vision
, pp. 484-499
-
-
Girdhar, R.1
Fouhey, D.F.2
Rodriguez, M.3
Gupta, A.4
-
15
-
-
84937849144
-
Generative adversarial nets
-
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger eds, Curran Associates, Inc
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates, Inc., 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
16
-
-
85046998290
-
Improved training of wasserstein gans
-
abs/1704.00028
-
Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C. Courville. Improved training of wasserstein gans. CoRR, abs/1704.00028, 2017.
-
(2017)
CoRR
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.C.5
-
18
-
-
85040229979
-
Deep convolutional networks on graph-structured data
-
Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data. CoRR, 2015.
-
(2015)
CoRR
-
-
Henaff, M.1
Bruna, J.2
LeCun, Y.3
-
19
-
-
85055683731
-
3D shape segmentation with projective convolutional networks
-
abs/1612.02808
-
Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 3d shape segmentation with projective convolutional networks. CoRR, abs/1612.02808, 2016.
-
(2016)
CoRR
-
-
Kalogerakis, E.1
Averkiou, M.2
Maji, S.3
Chaudhuri, S.4
-
20
-
-
85089921422
-
Rotation invariant spherical harmonic representation of 3d shape descriptors
-
Aire-la-Ville, Switzerland, Switzerland, Eurographics Association
-
Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Rotation invariant spherical harmonic representation of 3d shape descriptors. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP’03, pp. 156–164, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association. ISBN 1-58113-687-0.
-
(2003)
Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP’03
, pp. 156-164
-
-
Kazhdan, M.1
Funkhouser, T.2
Rusinkiewicz, S.3
-
21
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
abs/1412.6980
-
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
-
26
-
-
85010966298
-
Stacked convolutional autoencoders for surface recognition based on 3d point cloud data
-
Maierdan Maimaitimin, Keigo Watanabe, and Shoichi Maeyama. Stacked convolutional autoencoders for surface recognition based on 3d point cloud data. Artificial Life and Robotics, pp. 1–6, 2017. ISSN 1614-7456. doi: 10.1007/s10015-017-0350-9.
-
(2017)
Artificial Life and Robotics
, pp. 1-6
-
-
Maimaitimin, M.1
Watanabe, K.2
Maeyama, S.3
-
28
-
-
84986309307
-
Volumetric and multi-view cnns for object classification on 3d data
-
Las Vegas, NV, USA, June 27-30
-
Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J. Guibas. Volumetric and multi-view cnns for object classification on 3d data. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 5648–5656, 2016b. doi: 10.1109/CVPR.2016.609.
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
, vol.2016
, pp. 5648-5656
-
-
Qi, C.R.1
Su, H.2
Nießner, M.3
Dai, A.4
Yan, M.5
Guibas, L.J.6
-
29
-
-
85057270305
-
PointNet++: Deep hierarchical feature learning on point sets in a metric space
-
abs/1706.02413
-
Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. CoRR, abs/1706.02413, 2017.
-
(2017)
CoRR
-
-
Qi, C.R.1
Yi, L.2
Su, H.3
Guibas, L.J.4
-
31
-
-
0034313871
-
The earth mover’s distance as a metric for image retrieval
-
Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, (2):99–121, 2000. ISSN 1573-1405. doi: 10.1023/A:1026543900054.
-
(2000)
International Journal of Computer Vision
, Issue.2
, pp. 99-121
-
-
Rubner, Y.1
Tomasi, C.2
Guibas, L.J.3
-
32
-
-
84921817164
-
Learning representations by back-propagating errors
-
David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.
-
(1988)
Cognitive Modeling
, vol.5
, Issue.3
, pp. 1
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
33
-
-
84880792116
-
Map-based exploration of intrinsic shape differences and variability
-
July
-
Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Leonidas Guibas. Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph., 32(4):72:1–72:12, July 2013. ISSN 0730-0301. doi: 10.1145/2461912.2461959.
-
(2013)
ACM Trans. Graph.
, vol.32
, Issue.4
, pp. 7201-7212
-
-
Rustamov, R.M.1
Ovsjanikov, M.2
Azencot, O.3
Ben-Chen, M.4
Chazal, F.5
Guibas, L.6
-
34
-
-
85018875486
-
Improved techniques for training gans
-
Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In Advances in Neural Information Processing Systems, pp. 2226–2234, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2226-2234
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
36
-
-
84994319786
-
-
Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. How to train deep variational autoencoders and probabilistic ladder networks. arXiv preprint arXiv:1602.02282, 2016.
-
(2016)
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
-
-
Sønderby, C.K.1
Raiko, T.2
Maaløe, L.3
Sønderby, S.K.4
Winther, O.5
-
37
-
-
84973882748
-
Multi-view convolutional neural networks for 3d shape recognition
-
Santiago, Chile, December 7-13, 2015.
-
Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. Multi-view convolutional neural networks for 3d shape recognition. In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 945–953, 2015. doi: 10.1109/ICCV.2015.114.
-
(2015)
2015 IEEE International Conference on Computer Vision, ICCV 2015
, pp. 945-953
-
-
Su, H.1
Maji, S.2
Kalogerakis, E.3
Learned-Miller, E.G.4
-
39
-
-
84949650401
-
An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning
-
Yueqing Wang, Zhige Xie, Kai Xu, Yong Dou, and Yuanwu Lei. An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning. Neurocomputing, 174:988–998, 2016.
-
(2016)
Neurocomputing
, vol.174
, pp. 988-998
-
-
Wang, Y.1
Xie, Z.2
Xu, K.3
Dou, Y.4
Lei, Y.5
-
40
-
-
84986309327
-
Dense human body correspondences using convolutional networks
-
Las Vegas, NV, USA, June 27-30
-
Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. Dense human body correspondences using convolutional networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 1544–1553, 2016. doi: 10.1109/CVPR.2016.171.
-
(2016)
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
, vol.2016
, pp. 1544-1553
-
-
Wei, L.1
Huang, Q.2
Ceylan, D.3
Vouga, E.4
Li, H.5
-
41
-
-
85016159876
-
Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling
-
D. D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett eds, Curran Associates, Inc
-
Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 82–90. Curran Associates, Inc., 2016.
-
(2016)
Advances in Neural Information Processing Systems
, vol.29
, pp. 82-90
-
-
Wu, J.1
Zhang, C.2
Xue, T.3
Freeman, B.4
Tenenbaum, J.5
-
42
-
-
84949636429
-
3D shapenets: A deep representation for volumetric shapes
-
Boston, MA, USA, June 7-12, 2015
-
Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 1912–1920, 2015. doi: 10.1109/CVPR.2015.7298801.
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
, pp. 1912-1920
-
-
Wu, Z.1
Song, S.2
Khosla, A.3
Yu, F.4
Zhang, L.5
Tang, X.6
Xiao, J.7
-
43
-
-
85055445399
-
A scalable active framework for region annotation in 3d shape collections
-
Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas J. Guibas. A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graph., (6):210:1–210:12, 2016a.
-
(2016)
ACM Trans. Graph.
, Issue.6
, pp. 21001-21012
-
-
Yi, L.1
Kim, V.G.2
Ceylan, D.3
Shen, I.-C.4
Yan, M.5
Su, H.6
Lu, C.7
Huang, Q.8
Sheffer, A.9
Guibas, L.J.10
-
44
-
-
85057277369
-
SyncspecCNN: Synchronized spectral CNN for 3d shape segmentation
-
Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. Syncspeccnn: Synchronized spectral CNN for 3d shape segmentation. CoRR, 2016b.
-
(2016)
CoRR
-
-
Yi, L.1
Su, H.2
Guo, X.3
Guibas, L.J.4
|