-
1
-
-
85016188297
-
Advanced spectral classifiers for hyperspectral images: A review
-
Mar.
-
P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, "Advanced spectral classifiers for hyperspectral images: A review," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 8-32, Mar. 2017.
-
(2017)
IEEE Geosci. Remote Sens. Mag.
, vol.5
, Issue.1
, pp. 8-32
-
-
Ghamisi, P.1
Plaza, J.2
Chen, Y.3
Li, J.4
Plaza, A.J.5
-
2
-
-
84155181072
-
ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging
-
Feb.
-
J. Ren, "ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging," Knowl.-Based Syst., vol. 26, pp. 144-153, Feb. 2012.
-
(2012)
Knowl.-Based Syst.
, vol.26
, pp. 144-153
-
-
Ren, J.1
-
3
-
-
85043364952
-
Dynamic ensemble selection for multi-class imbalanced datasets
-
Jun.
-
S. García, Z.-L. Zhang, A. Altalhi, S. Alshomrani, and F. Herrera, "Dynamic ensemble selection for multi-class imbalanced datasets," Inf. Sci., vols. 445-446, pp. 22-37, Jun. 2018.
-
(2018)
Inf. Sci.
, vol.445-446
, pp. 22-37
-
-
García, S.1
Zhang, Z.-L.2
Altalhi, A.3
Alshomrani, S.4
Herrera, F.5
-
4
-
-
79953654774
-
Effective recognition of MCCs in mammograms using an improved neural classifier
-
Jun.
-
J. Ren, D. Wang, and J. Jiang, "Effective recognition of MCCs in mammograms using an improved neural classifier," Eng. Appl. Artif. Intell., vol. 24, no. 4, pp. 638-645, Jun. 2011.
-
(2011)
Eng. Appl. Artif. Intell.
, vol.24
, Issue.4
, pp. 638-645
-
-
Ren, J.1
Wang, D.2
Jiang, J.3
-
5
-
-
84941559528
-
Diversity techniques improve the performance of the best imbalance learning ensembles
-
Dec.
-
J. Díez-Pastor, J. J. Rodríguez, C. I. García-Osorio, and L. I. Kuncheva, "Diversity techniques improve the performance of the best imbalance learning ensembles," Inf. Sci., vol. 325, pp. 98-117, Dec. 2015.
-
(2015)
Inf. Sci.
, vol.325
, pp. 98-117
-
-
Díez-Pastor, J.1
Rodríguez, J.J.2
García-Osorio, C.I.3
Kuncheva, L.I.4
-
6
-
-
85043605198
-
Learning from imbalanced data: Open challenges and future directions
-
B. Krawczyk, "Learning from imbalanced data: Open challenges and future directions," Prog. Artif. Intell., vol. 5, no. 4, pp. 221-232, 2016.
-
(2016)
Prog. Artif. Intell.
, vol.5
, Issue.4
, pp. 221-232
-
-
Krawczyk, B.1
-
7
-
-
84979464666
-
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
-
Sep.
-
J. A. Sááez, B. Krawczyk, and M. Wozniak, "Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets," Pattern Recognit., vol. 57, pp. 164-178, Sep. 2016.
-
(2016)
Pattern Recognit
, vol.57
, pp. 164-178
-
-
Sááez, J.A.1
Krawczyk, B.2
Wozniak, M.3
-
8
-
-
85048303100
-
An empirical comparison on state-of-The-art multiclass imbalance learning algorithms and a new diversified ensemble learning scheme
-
Oct.
-
J. Bi and C. Zhang, "An empirical comparison on state-of-the-art multiclass imbalance learning algorithms and a new diversified ensemble learning scheme," Knowl.-Based Syst., vol. 158, pp. 81-93, Oct. 2018.
-
(2018)
Knowl.-Based Syst.
, vol.158
, pp. 81-93
-
-
Bi, J.1
Zhang, C.2
-
9
-
-
85047080680
-
Class imbalance ensemble learning based on the margin theory
-
W. Feng, W. Huang, and J. Ren, "Class imbalance ensemble learning based on the margin theory," Appl. Sci., vol. 8, no. 5, p. 815, 2018.
-
(2018)
Appl. Sci.
, vol.8
, Issue.5
, pp. 815
-
-
Feng, W.1
Huang, W.2
Ren, J.3
-
10
-
-
85028702271
-
Kernel based online learning for imbalance multiclass classification
-
Feb.
-
S. Ding et al., "Kernel based online learning for imbalance multiclass classification," Neurocomputing, vol. 277, pp. 139-148, Feb. 2018.
-
(2018)
Neurocomputing
, vol.277
, pp. 139-148
-
-
Ding, S.1
-
11
-
-
85042400496
-
A study on combining dynamic selection and data preprocessing for imbalance learning
-
Apr.
-
A. Roy, R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, "A study on combining dynamic selection and data preprocessing for imbalance learning," Neurocomputing, vol. 286, pp. 179-192, Apr. 2018.
-
(2018)
Neurocomputing
, vol.286
, pp. 179-192
-
-
Roy, A.1
Cruz, R.M.2
Sabourin, R.3
Cavalcanti, G.D.4
-
12
-
-
85049450664
-
Improving imbalanced learning through a heuristic oversampling method based on k-means and smote
-
Jun.
-
G. Douzas, F. Bacao, and F. Last, "Improving imbalanced learning through a heuristic oversampling method based on k-means and smote," Inf. Sci., vol. 465, pp. 1-20, Jun. 2018.
-
(2018)
Inf. Sci.
, vol.465
, pp. 1-20
-
-
Douzas, G.1
Bacao, F.2
Last, F.3
-
13
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique," J. Artif. Intell. Res., vol. 16, no. 1, pp. 321-357, 2002.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
14
-
-
85036623598
-
Weight-based rotation forest for hyperspectral image classification
-
Nov.
-
W. Feng and W. Bao, "Weight-based rotation forest for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 2167-2171, Nov. 2017.
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, Issue.11
, pp. 2167-2171
-
-
Feng, W.1
Bao, W.2
-
15
-
-
84927582865
-
Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features
-
Jul.
-
P. Du, A. Samat, B. Waske, S. Liu, and Z. Li, "Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features," ISPRS J. Photogramm. Remote Sens., vol. 105, pp. 38-53, Jul. 2015.
-
(2015)
ISPRS J. Photogramm. Remote Sens.
, vol.105
, pp. 38-53
-
-
Du, P.1
Samat, A.2
Waske, B.3
Liu, S.4
Li, Z.5
-
16
-
-
85008471279
-
Hyperspectral image classification with rotation random forest via KPCA
-
Apr.
-
J. Xia, N. Falco, J. A. Benediktsson, P. Du, and J. Chanussot, "Hyperspectral image classification with rotation random forest via KPCA," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1601-1609, Apr. 2017.
-
(2017)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.10
, Issue.4
, pp. 1601-1609
-
-
Xia, J.1
Falco, N.2
Benediktsson, J.A.3
Du, P.4
Chanussot, J.5
-
17
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
Oct.
-
J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, "Rotation forest: A new classifier ensemble method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619-1630, Oct. 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
18
-
-
85027945747
-
Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fields
-
Jun.
-
F. Li, L. Xu, P. Siva, A. Wong, and D. A. Clausi, "Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fields," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2427-2438, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.6
, pp. 2427-2438
-
-
Li, F.1
Xu, L.2
Siva, P.3
Wong, A.4
Clausi, D.A.5
-
19
-
-
85006321333
-
A cost-sensitive rotation forest algorithm for gene expression data classification
-
Mar.
-
H. Lu, L. Yang, K. Yan, Y. Xue, and Z. Gao, "A cost-sensitive rotation forest algorithm for gene expression data classification," Neurocomputing, vol. 228, pp. 270-276, Mar. 2017.
-
(2017)
Neurocomputing
, vol.228
, pp. 270-276
-
-
Lu, H.1
Yang, L.2
Yan, K.3
Xue, Y.4
Gao, Z.5
-
20
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
21
-
-
3042661357
-
Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
-
May
-
G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, May 2004.
-
(2004)
Photogramm. Eng. Remote Sens.
, vol.70
, Issue.5
, pp. 627-633
-
-
Foody, G.M.1
|