메뉴 건너뛰기




Volumn 16, Issue 12, 2019, Pages 1879-1883

Imbalanced Hyperspectral Image Classification with an Adaptive Ensemble Method Based on SMOTE and Rotation Forest with Differentiated Sampling Rates

Author keywords

Classification; ensemble learning; hyperspectral image; multiclass imbalance learning; SMOTE

Indexed keywords

DECISION TREES; HYPERSPECTRAL IMAGING; IMAGE CLASSIFICATION; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 85075604307     PISSN: 1545598X     EISSN: 15580571     Source Type: Journal    
DOI: 10.1109/LGRS.2019.2913387     Document Type: Article
Times cited : (57)

References (21)
  • 1
    • 85016188297 scopus 로고    scopus 로고
    • Advanced spectral classifiers for hyperspectral images: A review
    • Mar.
    • P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, "Advanced spectral classifiers for hyperspectral images: A review," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 8-32, Mar. 2017.
    • (2017) IEEE Geosci. Remote Sens. Mag. , vol.5 , Issue.1 , pp. 8-32
    • Ghamisi, P.1    Plaza, J.2    Chen, Y.3    Li, J.4    Plaza, A.J.5
  • 2
    • 84155181072 scopus 로고    scopus 로고
    • ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging
    • Feb.
    • J. Ren, "ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging," Knowl.-Based Syst., vol. 26, pp. 144-153, Feb. 2012.
    • (2012) Knowl.-Based Syst. , vol.26 , pp. 144-153
    • Ren, J.1
  • 3
    • 85043364952 scopus 로고    scopus 로고
    • Dynamic ensemble selection for multi-class imbalanced datasets
    • Jun.
    • S. García, Z.-L. Zhang, A. Altalhi, S. Alshomrani, and F. Herrera, "Dynamic ensemble selection for multi-class imbalanced datasets," Inf. Sci., vols. 445-446, pp. 22-37, Jun. 2018.
    • (2018) Inf. Sci. , vol.445-446 , pp. 22-37
    • García, S.1    Zhang, Z.-L.2    Altalhi, A.3    Alshomrani, S.4    Herrera, F.5
  • 4
    • 79953654774 scopus 로고    scopus 로고
    • Effective recognition of MCCs in mammograms using an improved neural classifier
    • Jun.
    • J. Ren, D. Wang, and J. Jiang, "Effective recognition of MCCs in mammograms using an improved neural classifier," Eng. Appl. Artif. Intell., vol. 24, no. 4, pp. 638-645, Jun. 2011.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.4 , pp. 638-645
    • Ren, J.1    Wang, D.2    Jiang, J.3
  • 5
    • 84941559528 scopus 로고    scopus 로고
    • Diversity techniques improve the performance of the best imbalance learning ensembles
    • Dec.
    • J. Díez-Pastor, J. J. Rodríguez, C. I. García-Osorio, and L. I. Kuncheva, "Diversity techniques improve the performance of the best imbalance learning ensembles," Inf. Sci., vol. 325, pp. 98-117, Dec. 2015.
    • (2015) Inf. Sci. , vol.325 , pp. 98-117
    • Díez-Pastor, J.1    Rodríguez, J.J.2    García-Osorio, C.I.3    Kuncheva, L.I.4
  • 6
    • 85043605198 scopus 로고    scopus 로고
    • Learning from imbalanced data: Open challenges and future directions
    • B. Krawczyk, "Learning from imbalanced data: Open challenges and future directions," Prog. Artif. Intell., vol. 5, no. 4, pp. 221-232, 2016.
    • (2016) Prog. Artif. Intell. , vol.5 , Issue.4 , pp. 221-232
    • Krawczyk, B.1
  • 7
    • 84979464666 scopus 로고    scopus 로고
    • Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
    • Sep.
    • J. A. Sááez, B. Krawczyk, and M. Wozniak, "Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets," Pattern Recognit., vol. 57, pp. 164-178, Sep. 2016.
    • (2016) Pattern Recognit , vol.57 , pp. 164-178
    • Sááez, J.A.1    Krawczyk, B.2    Wozniak, M.3
  • 8
    • 85048303100 scopus 로고    scopus 로고
    • An empirical comparison on state-of-The-art multiclass imbalance learning algorithms and a new diversified ensemble learning scheme
    • Oct.
    • J. Bi and C. Zhang, "An empirical comparison on state-of-the-art multiclass imbalance learning algorithms and a new diversified ensemble learning scheme," Knowl.-Based Syst., vol. 158, pp. 81-93, Oct. 2018.
    • (2018) Knowl.-Based Syst. , vol.158 , pp. 81-93
    • Bi, J.1    Zhang, C.2
  • 9
    • 85047080680 scopus 로고    scopus 로고
    • Class imbalance ensemble learning based on the margin theory
    • W. Feng, W. Huang, and J. Ren, "Class imbalance ensemble learning based on the margin theory," Appl. Sci., vol. 8, no. 5, p. 815, 2018.
    • (2018) Appl. Sci. , vol.8 , Issue.5 , pp. 815
    • Feng, W.1    Huang, W.2    Ren, J.3
  • 10
    • 85028702271 scopus 로고    scopus 로고
    • Kernel based online learning for imbalance multiclass classification
    • Feb.
    • S. Ding et al., "Kernel based online learning for imbalance multiclass classification," Neurocomputing, vol. 277, pp. 139-148, Feb. 2018.
    • (2018) Neurocomputing , vol.277 , pp. 139-148
    • Ding, S.1
  • 11
    • 85042400496 scopus 로고    scopus 로고
    • A study on combining dynamic selection and data preprocessing for imbalance learning
    • Apr.
    • A. Roy, R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, "A study on combining dynamic selection and data preprocessing for imbalance learning," Neurocomputing, vol. 286, pp. 179-192, Apr. 2018.
    • (2018) Neurocomputing , vol.286 , pp. 179-192
    • Roy, A.1    Cruz, R.M.2    Sabourin, R.3    Cavalcanti, G.D.4
  • 12
    • 85049450664 scopus 로고    scopus 로고
    • Improving imbalanced learning through a heuristic oversampling method based on k-means and smote
    • Jun.
    • G. Douzas, F. Bacao, and F. Last, "Improving imbalanced learning through a heuristic oversampling method based on k-means and smote," Inf. Sci., vol. 465, pp. 1-20, Jun. 2018.
    • (2018) Inf. Sci. , vol.465 , pp. 1-20
    • Douzas, G.1    Bacao, F.2    Last, F.3
  • 14
    • 85036623598 scopus 로고    scopus 로고
    • Weight-based rotation forest for hyperspectral image classification
    • Nov.
    • W. Feng and W. Bao, "Weight-based rotation forest for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 2167-2171, Nov. 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.11 , pp. 2167-2171
    • Feng, W.1    Bao, W.2
  • 15
    • 84927582865 scopus 로고    scopus 로고
    • Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features
    • Jul.
    • P. Du, A. Samat, B. Waske, S. Liu, and Z. Li, "Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features," ISPRS J. Photogramm. Remote Sens., vol. 105, pp. 38-53, Jul. 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 38-53
    • Du, P.1    Samat, A.2    Waske, B.3    Liu, S.4    Li, Z.5
  • 18
    • 85027945747 scopus 로고    scopus 로고
    • Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fields
    • Jun.
    • F. Li, L. Xu, P. Siva, A. Wong, and D. A. Clausi, "Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fields," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2427-2438, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2427-2438
    • Li, F.1    Xu, L.2    Siva, P.3    Wong, A.4    Clausi, D.A.5
  • 19
    • 85006321333 scopus 로고    scopus 로고
    • A cost-sensitive rotation forest algorithm for gene expression data classification
    • Mar.
    • H. Lu, L. Yang, K. Yan, Y. Xue, and Z. Gao, "A cost-sensitive rotation forest algorithm for gene expression data classification," Neurocomputing, vol. 228, pp. 270-276, Mar. 2017.
    • (2017) Neurocomputing , vol.228 , pp. 270-276
    • Lu, H.1    Yang, L.2    Yan, K.3    Xue, Y.4    Gao, Z.5
  • 20
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 21
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • May
    • G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, May 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.