-
1
-
-
79951829331
-
Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
-
Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F., Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft Comput., 17, 2011.
-
(2011)
J. Mult. Valued Logic Soft Comput.
, vol.17
-
-
Alcalá-Fdez, J.1
Fernández, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, L.6
Herrera, F.7
-
2
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newslett. 6:1 (2004), 20–29, 10.1145/1007730.1007735.
-
(2004)
ACM SIGKDD Explor. Newslett.
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
3
-
-
67650694660
-
Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
-
Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C., Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5476 LNAI, 2009, 475–482, 10.1007/978-3-642-01307-2_43.
-
(2009)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.vol. 5476 LNAI
, pp. 475-482
-
-
Bunkhumpornpat, C.1
Sinapiromsaran, K.2
Lursinsap, C.3
-
4
-
-
0346586663
-
Smote: synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., Smote: synthetic minority over-sampling technique. J. Arti. Intell. Res. 16 (2002), 321–357, 10.1613/jair.953.
-
(2002)
J. Arti. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
5
-
-
50549101751
-
Automatically countering imbalance and its empirical relationship to cost
-
Chawla, N.V., Cieslak, D.A., Hall, L.O., Joshi, A., Automatically countering imbalance and its empirical relationship to cost. Data Min. Knowl. Discov. 17:2 (2008), 225–252, 10.1007/s10618-008-0087-0.
-
(2008)
Data Min. Knowl. Discov.
, vol.17
, Issue.2
, pp. 225-252
-
-
Chawla, N.V.1
Cieslak, D.A.2
Hall, L.O.3
Joshi, A.4
-
6
-
-
27144549260
-
Editorial: special issue on learning from imbalanced data sets
-
Chawla, N.V., Japkowicz, N., Drive, P., Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newslett. 6:1 (2004), 1–6, 10.1145/1007730.1007733.
-
(2004)
ACM SIGKDD Explor. Newslett.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Drive, P.3
-
7
-
-
33751105239
-
Combating imbalance in network intrusion datasets
-
IEEE
-
Cieslak, D.A., Chawla, N.V., Striegel, A., Combating imbalance in network intrusion datasets. Proceedings of the IEEE International Conference on Granular Computing, 2006, IEEE, 732–737, 10.1109/GRC.2006.1635905.
-
(2006)
Proceedings of the IEEE International Conference on Granular Computing
, pp. 732-737
-
-
Cieslak, D.A.1
Chawla, N.V.2
Striegel, A.3
-
8
-
-
84856621489
-
Hellinger distance decision trees are robust and skew-insensitive
-
Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P., Hellinger distance decision trees are robust and skew-insensitive. Data Min. Knowl. Discov. 24:1 (2012), 136–158, 10.1007/s10618-011-0222-1.
-
(2012)
Data Min. Knowl. Discov.
, vol.24
, Issue.1
, pp. 136-158
-
-
Cieslak, D.A.1
Hoens, T.R.2
Chawla, N.V.3
Kegelmeyer, W.P.4
-
9
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
11
-
-
85017142343
-
Self-organizing map oversampling (SOMO) for imbalanced data set learning
-
Douzas, G., Bacao, F., Self-organizing map oversampling (SOMO) for imbalanced data set learning. Expert Syst. Appl. 82 (2017), 40–52, 10.1016/j.eswa.2017.03.073.
-
(2017)
Expert Syst. Appl.
, vol.82
, pp. 40-52
-
-
Douzas, G.1
Bacao, F.2
-
12
-
-
84941559528
-
Diversity techniques improve the performance of the best imbalance learning ensembles
-
Díez-Pastor, J.F., Rodrí-guez, J.J., García-Osorio, C.I., Kuncheva, L.I., Diversity techniques improve the performance of the best imbalance learning ensembles. Inf. Sci. (Ny) 325 (2015), 98–117, 10.1016/j.ins.2015.07.025.
-
(2015)
Inf. Sci. (Ny)
, vol.325
, pp. 98-117
-
-
Díez-Pastor, J.F.1
Rodrí-guez, J.J.2
García-Osorio, C.I.3
Kuncheva, L.I.4
-
13
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
Estabrooks, A., Jo, T., Japkowicz, N., A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20:1 (2004), 18–36, 10.1111/j.0824-7935.2004.t01-1-00228.x.
-
(2004)
Comput. Intell.
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
14
-
-
84874667219
-
Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches
-
Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F., Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl. Based Syst. 42 (2013), 97–110, 10.1016/j.knosys.2013.01.018.
-
(2013)
Knowl. Based Syst.
, vol.42
, pp. 97-110
-
-
Fernández, A.1
López, V.2
Galar, M.3
Del Jesus, M.J.4
Herrera, F.5
-
15
-
-
85049479610
-
-
Discriminatory analysis - nonparametric discrimination: Consistency properties. California Univ Berkeley.
-
E. Fix, J.L. Hodges Jr., Discriminatory analysis - nonparametric discrimination: Consistency properties. California Univ Berkeley, 1951.
-
(1951)
-
-
Fix, E.1
Hodges, J.L.2
-
16
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman, J.H., Greedy function approximation: a gradient boosting machine. Ann. Stat. 29:5 (2001), 1189–1232, 10.1214/aos/1013203451.
-
(2001)
Ann. Stat.
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
17
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
Friedman, M., The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc., 32(200), 1937, 675, 10.2307/2279372.
-
(1937)
J. Am. Stat. Assoc.
, vol.32
, Issue.200
, pp. 675
-
-
Friedman, M.1
-
18
-
-
84862515469
-
-
A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. doi
-
M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches, 2012. doi: 10.1109/TSMCC.2011.2161285.
-
(2012)
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
19
-
-
84962359556
-
Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets
-
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F., Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets. Inf. Sci. (Ny) 354 (2016), 178–196, 10.1016/j.ins.2016.02.056.
-
(2016)
Inf. Sci. (Ny)
, vol.354
, pp. 178-196
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
20
-
-
85049478221
-
-
Design of experiments of the NIPS 2003 variable selection benchmark.
-
I. Guyon, Design of experiments of the NIPS 2003 variable selection benchmark, 2003.
-
(2003)
-
-
Guyon, I.1
-
21
-
-
27144501672
-
Borderline-smote: a new over-sampling method in imbalanced data sets learning
-
Han, H., Wang, W.-Y., Mao, B.-H., Borderline-smote: a new over-sampling method in imbalanced data sets learning. Adv. Intell. Comput. 17:12 (2005), 878–887, 10.1007/11538059_91.
-
(2005)
Adv. Intell. Comput.
, vol.17
, Issue.12
, pp. 878-887
-
-
Han, H.1
Wang, W.-Y.2
Mao, B.-H.3
-
22
-
-
1642380461
-
The problem of overfitting
-
Hawkins, D.M., The problem of overfitting. J. Chem. Inf. Comput. Sci. 44:1 (2004), 1–12, 10.1002/chin.200419274.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, Issue.1
, pp. 1-12
-
-
Hawkins, D.M.1
-
23
-
-
68549133155
-
Learning from imbalanced data
-
He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284, 10.1109/TKDE.2008.239.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
24
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
Holm, S., A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6:2 (1979), 65–70.
-
(1979)
Scand. J. Stat.
, vol.6
, Issue.2
, pp. 65-70
-
-
Holm, S.1
-
25
-
-
0002448383
-
Concept learning and the problem of small disjuncts
-
Holte, R.C., Acker, L., Porter, B.W., et al. Concept learning and the problem of small disjuncts. Proceedings of the IJCAI, vol. 89, 1989, 813–818.
-
(1989)
Proceedings of the IJCAI
, vol.89
, pp. 813-818
-
-
Holte, R.C.1
Acker, L.2
Porter, B.W.3
-
26
-
-
85076269272
-
Assessment metrics for imbalanced learning
-
H. He Y. Ma John Wiley & Sons
-
Japkowicz, N., Assessment metrics for imbalanced learning. He, H., Ma, Y., (eds.) Imbalanced Learning, 2013, John Wiley & Sons, 187–206, 10.1002/9781118646106.ch8.
-
(2013)
Imbalanced Learning
, pp. 187-206
-
-
Japkowicz, N.1
-
27
-
-
27144540575
-
Class imbalances versus small disjuncts
-
Jo, T., Japkowicz, N., Class imbalances versus small disjuncts. ACM SIGKDD Explor. Newslett. 6:1 (2004), 40–49.
-
(2004)
ACM SIGKDD Explor. Newslett.
, vol.6
, Issue.1
, pp. 40-49
-
-
Jo, T.1
Japkowicz, N.2
-
28
-
-
35348935140
-
Handling imbalanced datasets: a review
-
Kotsiantis, S., Kanellopoulos, D., Pintelas, P., Handling imbalanced datasets: a review. Science 30:1 (2006), 25–36, 10.1007/978-0-387-09823-4_45.
-
(2006)
Science
, vol.30
, Issue.1
, pp. 25-36
-
-
Kotsiantis, S.1
Kanellopoulos, D.2
Pintelas, P.3
-
29
-
-
85049458647
-
-
Robustness of learning techniques in handling class noise in imbalanced datasets, doi
-
S. Kotsiantis, P. Pintelas, D. Anyfantis, M. Karagiannopoulos, Robustness of learning techniques in handling class noise in imbalanced datasets, 2007, doi: 10.1007/978-0-387-74161-1_3.
-
(2007)
-
-
Kotsiantis, S.1
Pintelas, P.2
Anyfantis, D.3
Karagiannopoulos, M.4
-
30
-
-
85016274615
-
Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning
-
Lemaître, G., Nogueira, F., Aridas, C.K., Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18:17 (2017), 1–5.
-
(2017)
J. Mach. Learn. Res.
, vol.18
, Issue.17
, pp. 1-5
-
-
Lemaître, G.1
Nogueira, F.2
Aridas, C.K.3
-
31
-
-
85049446968
-
-
Uci machine learning repository.
-
M. Lichman, Uci machine learning repository, 2013.
-
(2013)
-
-
Lichman, M.1
-
32
-
-
85019061365
-
Clustering-based undersampling in class-imbalanced data
-
Lin, W.-C., Tsai, C.-F., Hu, Y.-H., Jhang, J.-S., Clustering-based undersampling in class-imbalanced data. Inf. Sci. (Ny) 409–410 (2017), 17–26, 10.1016/j.ins.2017.05.008.
-
(2017)
Inf. Sci. (Ny)
, vol.409-410
, pp. 17-26
-
-
Lin, W.-C.1
Tsai, C.-F.2
Hu, Y.-H.3
Jhang, J.-S.4
-
33
-
-
85015659687
-
Cure-smote algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests
-
Ma, L., Fan, S., Cure-smote algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. BMC Bioinf., 18(1), 2017, 169, 10.1186/s12859-017-1578-z.
-
(2017)
BMC Bioinf.
, vol.18
, Issue.1
, pp. 169
-
-
Ma, L.1
Fan, S.2
-
35
-
-
0008680770
-
Generalized linear models
-
McCullagh, P., Generalized linear models. Eur. J. Oper. Res. 16:3 (1984), 285–292, 10.1016/0377-2217(84)90282-0.
-
(1984)
Eur. J. Oper. Res.
, vol.16
, Issue.3
, pp. 285-292
-
-
McCullagh, P.1
-
36
-
-
84947569019
-
Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets
-
Nekooeimehr, I., Lai-Yuen, S.K., Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Syst. Appl. 46 (2016), 405–416, 10.1016/j.eswa.2015.10.031.
-
(2016)
Expert Syst. Appl.
, vol.46
, pp. 405-416
-
-
Nekooeimehr, I.1
Lai-Yuen, S.K.2
-
37
-
-
8344227981
-
Using unsupervised learning to guide resampling in imbalanced data sets
-
Nickerson, A., Japkowicz, N., Milios, E.E., Using unsupervised learning to guide resampling in imbalanced data sets. Proceedings of the AISTATS, 2001, 261–265.
-
(2001)
Proceedings of the AISTATS
, pp. 261-265
-
-
Nickerson, A.1
Japkowicz, N.2
Milios, E.E.3
-
38
-
-
80555140075
-
Scikit-learn: machine learning in python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
39
-
-
35048878309
-
Learning with class skews and small disjuncts
-
Prati, R.C., Batista, G., Monard, M.C., Learning with class skews and small disjuncts. Proceedings of the SBIA, 2004, 296–306, 10.1007/978-3-540-28645-5_30.
-
(2004)
Proceedings of the SBIA
, pp. 296-306
-
-
Prati, R.C.1
Batista, G.2
Monard, M.C.3
-
41
-
-
85018316823
-
Noise reduction a priori synthetic over-sampling for class imbalanced data sets
-
Rivera, W.A., Noise reduction a priori synthetic over-sampling for class imbalanced data sets. Inf. Sci. (Ny) 408 (2017), 146–161, 10.1016/j.ins.2017.04.046.
-
(2017)
Inf. Sci. (Ny)
, vol.408
, pp. 146-161
-
-
Rivera, W.A.1
-
42
-
-
84947934366
-
A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients
-
Santos, M.S., Abreu, P.H., García-Laencina, P.J., Simão, A., Carvalho, A., A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients. J. Biomed. Inf. 58 (2015), 49–59, 10.1016/j.jbi.2015.09.012.
-
(2015)
J. Biomed. Inf.
, vol.58
, pp. 49-59
-
-
Santos, M.S.1
Abreu, P.H.2
García-Laencina, P.J.3
Simão, A.4
Carvalho, A.5
-
44
-
-
84987935065
-
A bi-directional sampling based on k-means method for imbalance text classification
-
Song, J., Huang, X., Qin, S., Song, Q., A bi-directional sampling based on k-means method for imbalance text classification. Proceedings of the International Conference on Computer and Information Science (ICIS), 2016, 1–5, 10.1109/icis.2016.7550920.
-
(2016)
Proceedings of the International Conference on Computer and Information Science (ICIS)
, pp. 1-5
-
-
Song, J.1
Huang, X.2
Qin, S.3
Song, Q.4
-
45
-
-
84923328437
-
SMOTE-IPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
-
Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F., SMOTE-IPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. (Ny) 291 (2015), 184–203, 10.1016/j.ins.2014.08.051.
-
(2015)
Inf. Sci. (Ny)
, vol.291
, pp. 184-203
-
-
Sáez, J.A.1
Luengo, J.2
Stefanowski, J.3
Herrera, F.4
-
46
-
-
85021059612
-
Imbalanced classification in sparse and large behaviour datasets
-
Vanhoeyveld, J., Martens, D., Imbalanced classification in sparse and large behaviour datasets. Data Min. Knowl. Discov., 2017, 1–58, 10.1007/s10618-017-0517-y.
-
(2017)
Data Min. Knowl. Discov.
, pp. 1-58
-
-
Vanhoeyveld, J.1
Martens, D.2
-
47
-
-
50549087624
-
Cost-sensitive learning vs. sampling: which is best for handling unbalanced classes with unequal error costs?
-
Weiss, G.M., McCarthy, K., Zabar, B., Cost-sensitive learning vs. sampling: which is best for handling unbalanced classes with unequal error costs?. DMIN 7 (2007), 35–41.
-
(2007)
DMIN
, vol.7
, pp. 35-41
-
-
Weiss, G.M.1
McCarthy, K.2
Zabar, B.3
-
48
-
-
77649273505
-
COG: local decomposition for rare class analysis
-
Wu, J., Xiong, H., Chen, J., COG: local decomposition for rare class analysis. Data Min. Knowl. Discov. 20:2 (2010), 191–220, 10.1007/s10618-009-0146-1.
-
(2010)
Data Min. Knowl. Discov.
, vol.20
, Issue.2
, pp. 191-220
-
-
Wu, J.1
Xiong, H.2
Chen, J.3
-
49
-
-
85018384906
-
An empirical comparison of techniques for the class imbalance problem in churn prediction
-
Zhu, B., Baesens, B., vanden Broucke, S.K.L.M., An empirical comparison of techniques for the class imbalance problem in churn prediction. Inf. Sci. (Ny) 408 (2017), 84–99, 10.1016/j.ins.2017.04.015.
-
(2017)
Inf. Sci. (Ny)
, vol.408
, pp. 84-99
-
-
Zhu, B.1
Baesens, B.2
vanden Broucke, S.K.L.M.3
|