-
1
-
-
0031010342
-
A survey of telomerase activity in human cancer
-
[1] Shay, J.W., Bacchetti, S., A survey of telomerase activity in human cancer. Eur. J. Cancer 33:5 (1997), 787–791.
-
(1997)
Eur. J. Cancer
, vol.33
, Issue.5
, pp. 787-791
-
-
Shay, J.W.1
Bacchetti, S.2
-
2
-
-
33947722975
-
Automated Cancer Diagnosis Based on Histopathological Images: A Systematic Survey
-
Rensselaer Polytechnic Institute (Tech. Rep)
-
[2] Demir, C., Yener, B., Automated Cancer Diagnosis Based on Histopathological Images: A Systematic Survey. 2005, Rensselaer Polytechnic Institute (Tech. Rep).
-
(2005)
-
-
Demir, C.1
Yener, B.2
-
3
-
-
34249317613
-
Breast cancer diagnosis using least square support vector machine
-
[3] Polat, K., Güneş, S., Breast cancer diagnosis using least square support vector machine. Digit. Signal Process. 17:4 (2007), 694–701.
-
(2007)
Digit. Signal Process.
, vol.17
, Issue.4
, pp. 694-701
-
-
Polat, K.1
Güneş, S.2
-
4
-
-
34547992213
-
Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
-
[4] Zhang, R., Huang, G.B., Sundararajan, N., Saratchandran, P., Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinforma. (TCBB) 4:3 (2007), 485–495.
-
(2007)
IEEE/ACM Trans. Comput. Biol. Bioinforma. (TCBB)
, vol.4
, Issue.3
, pp. 485-495
-
-
Zhang, R.1
Huang, G.B.2
Sundararajan, N.3
Saratchandran, P.4
-
5
-
-
12444320350
-
Gene selection from microarray data for cancer classification—a machine learning approach
-
[5] Wang, Y., Tetko, I.V., Hall, M.A., Frank, E., Facius, A., Mayer, K.F., Mewes, H.W., Gene selection from microarray data for cancer classification—a machine learning approach. Comput. Biol. Chem. 29:1 (2005), 37–46.
-
(2005)
Comput. Biol. Chem.
, vol.29
, Issue.1
, pp. 37-46
-
-
Wang, Y.1
Tetko, I.V.2
Hall, M.A.3
Frank, E.4
Facius, A.5
Mayer, K.F.6
Mewes, H.W.7
-
6
-
-
84965184081
-
Mining the bladder cancer-associated genes by an integrated strategy for the construction and analysis of differential co-expression networks
-
[6] Deng, S.P., Zhu, L., Huang, D.S., Mining the bladder cancer-associated genes by an integrated strategy for the construction and analysis of differential co-expression networks. BMC Genom., 16(Suppl 3), 2015, S4.
-
(2015)
BMC Genom.
, vol.16
, pp. S4
-
-
Deng, S.P.1
Zhu, L.2
Huang, D.S.3
-
7
-
-
84961994343
-
Predicting hub genes associated with cervical cancer through gene co-expression networks
-
[7] Deng, S.P., Zhu, L., Huang, D.S., Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans. Comput. Biol. Bioinforma. (TCBB) 13:1 (2016), 27–35.
-
(2016)
IEEE/ACM Trans. Comput. Biol. Bioinforma. (TCBB)
, vol.13
, Issue.1
, pp. 27-35
-
-
Deng, S.P.1
Zhu, L.2
Huang, D.S.3
-
8
-
-
39749192053
-
Gene selection using genetic algorithm and support vectors machines
-
[8] Li, S., Wu, X., Hu, X., Gene selection using genetic algorithm and support vectors machines. Soft Comput. 12:7 (2008), 693–698.
-
(2008)
Soft Comput.
, vol.12
, Issue.7
, pp. 693-698
-
-
Li, S.1
Wu, X.2
Hu, X.3
-
9
-
-
67749108622
-
Tumor clustering using nonnegative matrix factorization with gene selection
-
[9] Zheng, C.H., Huang, D.S., Zhang, L., Kong, X.Z., Tumor clustering using nonnegative matrix factorization with gene selection. Inf. Technol. Biomed. IEEE Trans. on 13:4 (2009), 599–607.
-
(2009)
Inf. Technol. Biomed. IEEE Trans. on
, vol.13
, Issue.4
, pp. 599-607
-
-
Zheng, C.H.1
Huang, D.S.2
Zhang, L.3
Kong, X.Z.4
-
10
-
-
84939150619
-
Adaptive fuzzy consensus clustering framework for clustering analysis of cancer data
-
[10] Yu, Z., Chen, H., You, J., Liu, J., Wong, H.S., Han, G., Li, L., Adaptive fuzzy consensus clustering framework for clustering analysis of cancer data. IEEE/ACM Trans. Comput. Biol. Bioinforma. 12:4 (2015), 887–901.
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinforma.
, vol.12
, Issue.4
, pp. 887-901
-
-
Yu, Z.1
Chen, H.2
You, J.3
Liu, J.4
Wong, H.S.5
Han, G.6
Li, L.7
-
11
-
-
84930848543
-
Double selection based semi-supervised clustering ensemble for tumor clustering from gene expression profiles
-
[11] Yu, Z., Chen, H., You, J., Wong, H.S., Liu, J., Li, L., Han, G., Double selection based semi-supervised clustering ensemble for tumor clustering from gene expression profiles. IEEE/ACM Trans. Comput. Biol. Bioinforma. (TCBB) 11:4 (2014), 727–740.
-
(2014)
IEEE/ACM Trans. Comput. Biol. Bioinforma. (TCBB)
, vol.11
, Issue.4
, pp. 727-740
-
-
Yu, Z.1
Chen, H.2
You, J.3
Wong, H.S.4
Liu, J.5
Li, L.6
Han, G.7
-
12
-
-
84896404801
-
Hybrid Fuzzy Cluster Ensemble Framework for Tumor Clustering from Biomolecular Data
-
[12] Yu, Z., Chen, H., You, J., Han, G., Li, L., Hybrid Fuzzy Cluster Ensemble Framework for Tumor Clustering from Biomolecular Data. IEEE/ACM Trans. Comput. Biol. Bioinforma. 10:3 (2013), 657–670.
-
(2013)
IEEE/ACM Trans. Comput. Biol. Bioinforma.
, vol.10
, Issue.3
, pp. 657-670
-
-
Yu, Z.1
Chen, H.2
You, J.3
Han, G.4
Li, L.5
-
13
-
-
33747865502
-
Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
-
[13] Huang, D.S., Zheng, C.H., Independent component analysis-based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 22:15 (2006), 1855–1862.
-
(2006)
Bioinformatics
, vol.22
, Issue.15
, pp. 1855-1862
-
-
Huang, D.S.1
Zheng, C.H.2
-
15
-
-
0034714421
-
Gene expression data analysis
-
[15] Brazma, Alvis, Vilo, Jaak, Gene expression data analysis. FEBS Lett. 480.1 (2000), 17–24.
-
(2000)
FEBS Lett.
, vol.480.1
, pp. 17-24
-
-
Brazma, A.1
Vilo, J.2
-
16
-
-
0012227394
-
Systematic theory of neural networks for pattern recognition
-
[16] Huang, D.S., Systematic theory of neural networks for pattern recognition. Publ. House Electron. Ind. China, Beijing 28 (1996), 323–332.
-
(1996)
Publ. House Electron. Ind. China, Beijing
, vol.28
, pp. 323-332
-
-
Huang, D.S.1
-
17
-
-
0000759063
-
Radial basis probabilistic neural networks: model and application
-
[17] Huang, D.S., Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recognit. Artif. Intell. 13:07 (1999), 1083–1101.
-
(1999)
Int. J. Pattern Recognit. Artif. Intell.
, vol.13
, Issue.7
, pp. 1083-1101
-
-
Huang, D.S.1
-
18
-
-
57749092656
-
A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
-
[18] Huang, D.S., Du, J.X., A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19:12 (2008), 2099–2115.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.12
, pp. 2099-2115
-
-
Huang, D.S.1
Du, J.X.2
-
19
-
-
84904133184
-
ARX model based fault detection and diagnosis for chillers using support vector machines
-
[19] Yan, K., Shen, W., Mulumba, T., Afshari, A., ARX model based fault detection and diagnosis for chillers using support vector machines. Energy Build. 81 (2014), 287–295.
-
(2014)
Energy Build.
, vol.81
, pp. 287-295
-
-
Yan, K.1
Shen, W.2
Mulumba, T.3
Afshari, A.4
-
20
-
-
85009483894
-
A Cost-sensitive Decision Tree under the Condition of Multiple Classes
-
[20] S.Feng, A Cost-sensitive Decision Tree under the Condition of Multiple Classes, 2015.
-
(2015)
-
-
Feng, S.1
-
21
-
-
0035478854
-
Random Forests[J]
-
[21] Breiman, Leo, Random Forests[J]. Mach. Learn.(1), 2001.
-
(2001)
Mach. Learn.
, Issue.1
-
-
Breiman, L.1
-
22
-
-
33750095186
-
Rotation forest: a new classifier ensemble method
-
[22] Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J., Rotation forest: a new classifier ensemble method. Pattern Anal. Mach. Intell., IEEE Trans. on 28:10 (2006), 1619–1630.
-
(2006)
Pattern Anal. Mach. Intell., IEEE Trans. on
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
23
-
-
84938787624
-
March Improving rotation forest performance for imbalanced data classification through fuzzy clustering
-
In Artificial Intelligence and Signal Processing (AISP), 2015 International Symposium on IEEE,.
-
[23] M. Hosseinzadeh, M. Eftekhari, March. Improving rotation forest performance for imbalanced data classification through fuzzy clustering. In Artificial Intelligence and Signal Processing (AISP), 2015 International Symposium on pp. 35–40. IEEE, 2015.
-
(2015)
, pp. 35-40
-
-
Hosseinzadeh, M.1
Eftekhari, M.2
-
24
-
-
84962525639
-
Highly imbalanced classification using improved rotation forests
-
[24] Fang, X., Zheng, X., Tan, Y., Zhang, H., Highly imbalanced classification using improved rotation forests. Int. J. Wirel. Mob. Comput. 10:1 (2016), 35–41.
-
(2016)
Int. J. Wirel. Mob. Comput.
, vol.10
, Issue.1
, pp. 35-41
-
-
Fang, X.1
Zheng, X.2
Tan, Y.3
Zhang, H.4
-
25
-
-
84878098426
-
December The influence of class imbalance on cost-sensitive learning: An empirical study
-
In Data Mining, 2006. ICDM'06.in: Proceedings of the Sixth International Conference on pp.
-
[25] X.Y. Liu, Z.H. Zhou, December. The influence of class imbalance on cost-sensitive learning: An empirical study. In Data Mining, 2006. ICDM'06.in: Proceedings of the Sixth International Conference on pp. 970–974. IEEE, 2006.
-
(2006)
, pp. 970-974
-
-
Liu, X.Y.1
Zhou, Z.H.2
-
26
-
-
85027922353
-
Hybrid adaptive classifier ensemble
-
[26] Yu, Z., Li, L., Liu, J., Han, G., Hybrid adaptive classifier ensemble. IEEE Trans. Cybern. 45:2 (2015), 177–190.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.2
, pp. 177-190
-
-
Yu, Z.1
Li, L.2
Liu, J.3
Han, G.4
-
27
-
-
84933564979
-
Hybrid-Nearest Neighbor Classifier
-
[27] Yu, Z., Chen, H., Liu, J., You, J., Leung, H., Han, G., Hybrid-Nearest Neighbor Classifier. IEEE Trans. Cybern. 46:6 (2016), 1263–1275.
-
(2016)
IEEE Trans. Cybern.
, vol.46
, Issue.6
, pp. 1263-1275
-
-
Yu, Z.1
Chen, H.2
Liu, J.3
You, J.4
Leung, H.5
Han, G.6
-
28
-
-
84875204064
-
A survey of cost-sensitive decision tree induction algorithms
-
[28] Lomax, S., Vadera, S., A survey of cost-sensitive decision tree induction algorithms. ACM Comput. Surv. (CSUR), 45(2), 2013, 16.
-
(2013)
ACM Comput. Surv. (CSUR)
, vol.45
, Issue.2
, pp. 16
-
-
Lomax, S.1
Vadera, S.2
-
29
-
-
84880604961
-
ECG beat classification using a cost sensitive classifier
-
[29] Zidelmal, Z., Amirou, A., Ould-Abdeslam, D., Merckle, J., ECG beat classification using a cost sensitive classifier. Comput. Methods Prog. Biomed. 111:3 (2013), 570–577.
-
(2013)
Comput. Methods Prog. Biomed.
, vol.111
, Issue.3
, pp. 570-577
-
-
Zidelmal, Z.1
Amirou, A.2
Ould-Abdeslam, D.3
Merckle, J.4
-
30
-
-
84952845449
-
A Cost Sensitive Minimal Learning Machine for Pattern Classification
-
(November)Neural Information Processing Springer International Publishing, pp.
-
[30] J.P.P., Gomes, A.H., Souza, Jr F., Corona, A.R.R., Neto, A Cost Sensitive Minimal Learning Machine for Pattern Classification (November)Neural Information Processing 2015 Springer International Publishing, pp. 557–564.
-
(2015)
, pp. 557-564
-
-
Gomes, J.P.P.1
Souza Jr, A.H.2
Corona, F.3
Neto, A.R.R.4
-
31
-
-
84875204064
-
A survey of cost-sensitive decision tree induction algorithms
-
[31] Lomax, S., Vadera, S., A survey of cost-sensitive decision tree induction algorithms. ACM Comput. Surv. (CSUR), 45(2), 2013, 16.
-
(2013)
ACM Comput. Surv. (CSUR)
, vol.45
, Issue.2
, pp. 16
-
-
Lomax, S.1
Vadera, S.2
-
32
-
-
84930467127
-
Regularised extreme learning machine with misclassification cost and rejection cost for gene expression data classification
-
[32] Lu, H., Wei, S., Zhou, Z., Miao, Y., Lu, Y., Regularised extreme learning machine with misclassification cost and rejection cost for gene expression data classification. Int. J. data Min. Bioinforma. 12:3 (2015), 294–312.
-
(2015)
Int. J. data Min. Bioinforma.
, vol.12
, Issue.3
, pp. 294-312
-
-
Lu, H.1
Wei, S.2
Zhou, Z.3
Miao, Y.4
Lu, Y.5
-
33
-
-
84884493455
-
Cost-sensitive boosting algorithms for imbalanced multi-instance datasets Advances in Artificial Intelligence
-
Springer Berlin Heidelberg,, pp.
-
[33] X., Wang, S., Matwin, N., Japkowicz, X., Liu, Cost-sensitive boosting algorithms for imbalanced multi-instance datasets Advances in Artificial Intelligence, Springer Berlin Heidelberg, 2013, pp. 174–186.
-
(2013)
, pp. 174-186
-
-
Wang, X.1
Matwin, S.2
Japkowicz, N.3
Liu, X.4
-
34
-
-
33746336969
-
Test strategies for cost-sensitive decision trees. Knowledge and data engineering
-
[34] Ling, C.X., Sheng, V.S., Yang, Q., Test strategies for cost-sensitive decision trees. Knowledge and data engineering. IEEE Trans. on 18:8 (2006), 1055–1067.
-
(2006)
IEEE Trans. on
, vol.18
, Issue.8
, pp. 1055-1067
-
-
Ling, C.X.1
Sheng, V.S.2
Yang, Q.3
-
35
-
-
84986000591
-
Applying cost-sensitive extreme learning machine and dissimilarity integration to gene expression data classification
-
[35] Liu, Y., Lu, H., Yan, K., Xia, H., An, C., Applying cost-sensitive extreme learning machine and dissimilarity integration to gene expression data classification. Comput. Intell. Neurosci., 2016, 2016.
-
(2016)
Comput. Intell. Neurosci.
, vol.2016
-
-
Liu, Y.1
Lu, H.2
Yan, K.3
Xia, H.4
An, C.5
-
36
-
-
0036565589
-
An instance-weighting method to induce cost-sensitive trees
-
[36] Ting, K.M., An instance-weighting method to induce cost-sensitive trees. Knowl. Data Eng. IEEE Trans. on 14:3 (2002), 659–665.
-
(2002)
Knowl. Data Eng. IEEE Trans. on
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
37
-
-
84894066865
-
The CART decision tree for mining data streams
-
[37] Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P., The CART decision tree for mining data streams. Inf. Sci. 266 (2014), 1–15.
-
(2014)
Inf. Sci.
, vol.266
, pp. 1-15
-
-
Rutkowski, L.1
Jaworski, M.2
Pietruczuk, L.3
Duda, P.4
-
38
-
-
85152855869
-
CART: classification and regression trees
-
[38] Steinberg, D., Colla, P., CART: classification and regression trees. Top. Ten Algorithms Data Min., 9, 2009, 179.
-
(2009)
Top. Ten Algorithms Data Min.
, vol.9
, pp. 179
-
-
Steinberg, D.1
Colla, P.2
-
39
-
-
79957460742
-
Cost-sensitive multi-label learning for audio tag annotation and retrieval
-
[39] Lo, H.Y., Wang, J.C., Wang, H.M., Lin, S.D., Cost-sensitive multi-label learning for audio tag annotation and retrieval. Multimedia IEEE Trans. on 13:3 (2011), 518–529.
-
(2011)
Multimedia IEEE Trans. on
, vol.13
, Issue.3
, pp. 518-529
-
-
Lo, H.Y.1
Wang, J.C.2
Wang, H.M.3
Lin, S.D.4
-
40
-
-
0030211964
-
Bagging predictors
-
[40] Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
41
-
-
84960172788
-
Improving reliability of genomic predictions for Jersey sires using bootstrap aggregation sampling
-
[41] Mikshowsky, A.A., Gianola, D., Weigel, K.A., Improving reliability of genomic predictions for Jersey sires using bootstrap aggregation sampling. J. Dairy Sci. 99:5 (2016), 3632–3645.
-
(2016)
J. Dairy Sci.
, vol.99
, Issue.5
, pp. 3632-3645
-
-
Mikshowsky, A.A.1
Gianola, D.2
Weigel, K.A.3
-
42
-
-
84911445875
-
Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data
-
[42] López, V., del Río, S., Benítez, J.M., Herrera, F., Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data. Fuzzy Sets Syst. 258 (2015), 5–38.
-
(2015)
Fuzzy Sets Syst.
, vol.258
, pp. 5-38
-
-
López, V.1
del Río, S.2
Benítez, J.M.3
Herrera, F.4
-
43
-
-
85009458860
-
Effects of Different Pre-processing Strategies: a Comparative Study on Decision Tree Algorithms
-
[43] Dadye, H.B., Rimiru, R., Effects of Different Pre-processing Strategies: a Comparative Study on Decision Tree Algorithms. Int. J. Digit. Content Technol. Appl., 7(7), 2013, 939.
-
(2013)
Int. J. Digit. Content Technol. Appl.
, vol.7
, Issue.7
, pp. 939
-
-
Dadye, H.B.1
Rimiru, R.2
-
44
-
-
85009466401
-
Experience in building a comparative performance analysis engine for a commercial system
-
(UCSD)
-
[44] Huang, P., Schechter, C., Chen, V., Hill, S., Shen, D., Zhou, Y., Saul, L.K., Experience in building a comparative performance analysis engine for a commercial system. Tech. Rep. CS2, 2015, 015–1014 (UCSD).
-
(2015)
Tech. Rep. CS2
, pp. 015-1014
-
-
Huang, P.1
Schechter, C.2
Chen, V.3
Hill, S.4
Shen, D.5
Zhou, Y.6
Saul, L.K.7
-
45
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
[45] Huang, G.B., Zhou, H., Ding, X., Zhang, R., Extreme learning machine for regression and multiclass classification. Syst. Man Cybern. Part B: Cybern. IEEE Trans. 42:2 (2012), 513–529.
-
(2012)
Syst. Man Cybern. Part B: Cybern. IEEE Trans.
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
46
-
-
84893651131
-
Dissimilarity based ensemble of extreme learning machine for gene expression data classification
-
[46] Lu, H.J., An, C.L., Zheng, E.H., Lu, Y., Dissimilarity based ensemble of extreme learning machine for gene expression data classification. Neurocomputing 128 (2014), 22–30.
-
(2014)
Neurocomputing
, vol.128
, pp. 22-30
-
-
Lu, H.J.1
An, C.L.2
Zheng, E.H.3
Lu, Y.4
-
47
-
-
84888786064
-
ELM-based gene expression classification with misclassification cost
-
[47] Lu, H.J., Zheng, E.H., Lu, Y., Ma, X.P., Liu, J.Y., ELM-based gene expression classification with misclassification cost. Neural Comput. Appl. 25:3–4 (2014), 525–531.
-
(2014)
Neural Comput. Appl.
, vol.25
, Issue.3-4
, pp. 525-531
-
-
Lu, H.J.1
Zheng, E.H.2
Lu, Y.3
Ma, X.P.4
Liu, J.Y.5
|