메뉴 건너뛰기




Volumn 445-446, Issue , 2018, Pages 22-37

Dynamic ensemble selection for multi-class imbalanced datasets

Author keywords

Binary decomposition; Ensemble learning; Imbalanced datasets; Multi class classification; Multiple classifier system; Resampling techniques

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 85043364952     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2018.03.002     Document Type: Article
Times cited : (154)

References (50)
  • 1
    • 84947127879 scopus 로고    scopus 로고
    • To combat multi-class imbalanced problems by means of over-sampling and boosting techniques
    • Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling and boosting techniques. Soft Comput. 19:12 (2015), 3369–3385.
    • (2015) Soft Comput. , vol.19 , Issue.12 , pp. 3369-3385
    • Abdi, L.1    Hashemi, S.2
  • 2
    • 84961631662 scopus 로고    scopus 로고
    • To combat multi-class imbalanced problems by means of over-sampling techniques
    • Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28:1 (2016), 238–251.
    • (2016) IEEE Trans. Knowl. Data Eng. , vol.28 , Issue.1 , pp. 238-251
    • Abdi, L.1    Hashemi, S.2
  • 4
    • 84904400137 scopus 로고    scopus 로고
    • Dynamic selection of classifiers – a comprehensive review
    • Britto, A.S., Sabourin, R., Oliveira, L.E., Dynamic selection of classifiers – a comprehensive review. Pattern Recognit. 47:11 (2014), 3665–3680.
    • (2014) Pattern Recognit. , vol.47 , Issue.11 , pp. 3665-3680
    • Britto, A.S.1    Sabourin, R.2    Oliveira, L.E.3
  • 6
    • 84937927040 scopus 로고    scopus 로고
    • Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs
    • Datta, S., Das, S., Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs. Neural Netw. 70 (2015), 39–52.
    • (2015) Neural Netw. , vol.70 , pp. 39-52
    • Datta, S.1    Das, S.2
  • 7
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • Derrac, J., García, S., Molina, D., Herrera, F., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1:1 (2011), 3–18.
    • (2011) Swarm Evol. Comput. , vol.1 , Issue.1 , pp. 3-18
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 8
    • 45549107002 scopus 로고    scopus 로고
    • A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
    • Dos Santos, E.M., Sabourin, R., Maupin, P., A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit. 41:10 (2008), 2993–3009.
    • (2008) Pattern Recognit. , vol.41 , Issue.10 , pp. 2993-3009
    • Dos Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 9
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches
    • Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F., Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl. Based Syst. 42 (2013), 97–110.
    • (2013) Knowl. Based Syst. , vol.42 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    Del Jesus, M.J.4    Herrera, F.5
  • 11
    • 79953050208 scopus 로고    scopus 로고
    • A dynamic over-sampling procedure based on sensitivity for multi-class problems
    • Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P.A., A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit. 44:8 (2011), 1821–1833.
    • (2011) Pattern Recognit. , vol.44 , Issue.8 , pp. 1821-1833
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Gutiérrez, P.A.3
  • 12
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classification
    • Ferri, C., Hernández-Orallo, J., Modroiu, R., An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 30:1 (2009), 27–38.
    • (2009) Pattern Recognit. Lett. , vol.30 , Issue.1 , pp. 27-38
    • Ferri, C.1    Hernández-Orallo, J.2    Modroiu, R.3
  • 13
    • 84994890364 scopus 로고    scopus 로고
    • NMC: Nearest matrix classification – a new combination model for pruning one-vs-one ensembles by transforming the aggregation problem
    • Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., NMC: Nearest matrix classification – a new combination model for pruning one-vs-one ensembles by transforming the aggregation problem. Inf. Fusion 36 (2017), 26–51.
    • (2017) Inf. Fusion , vol.36 , pp. 26-51
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 14
    • 50549093573 scopus 로고    scopus 로고
    • On the k-nn performance in a challenging scenario of imbalance and overlapping
    • García, V., Mollineda, R.A., Sánchez, J.S., On the k-nn performance in a challenging scenario of imbalance and overlapping. Pattern Anal. Appl. 11:3–4 (2008), 269–280.
    • (2008) Pattern Anal. Appl. , vol.11 , Issue.3-4 , pp. 269-280
    • García, V.1    Mollineda, R.A.2    Sánchez, J.S.3
  • 15
    • 85009165593 scopus 로고    scopus 로고
    • Learning from class-imbalanced data: review of methods and applications
    • Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G., Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73 (2017), 220–239, 10.1016/j.eswa.2016.12.035.
    • (2017) Expert Syst. Appl. , vol.73 , pp. 220-239
    • Haixiang, G.1    Yijing, L.2    Shang, J.3    Mingyun, G.4    Yuanyue, H.5    Bing, G.6
  • 16
    • 84962476443 scopus 로고    scopus 로고
    • BPSO-adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification
    • Haixiang, G., Yijing, L., Yanan, L., Xiao, L., Jinling, L., BPSO-adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification. Eng. Appl. Artif. Intell. 49 (2016), 176–193.
    • (2016) Eng. Appl. Artif. Intell. , vol.49 , pp. 176-193
    • Haixiang, G.1    Yijing, L.2    Yanan, L.3    Xiao, L.4    Jinling, L.5
  • 17
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 18
    • 0001589146 scopus 로고
    • Rank methods for combination of independent experiments in analysis of variance
    • Hodges, J., Lehmann, E.L., et al. Rank methods for combination of independent experiments in analysis of variance. Ann. Math. Stat. 33:2 (1962), 482–497.
    • (1962) Ann. Math. Stat. , vol.33 , Issue.2 , pp. 482-497
    • Hodges, J.1    Lehmann, E.L.2
  • 19
    • 84861442505 scopus 로고    scopus 로고
    • Building decision trees for the multi-class imbalance problem
    • Hoens, T., Qian, Q., Chawla, N., Zhou, Z.-H., Building decision trees for the multi-class imbalance problem. Adv. Knowl. Discov. Data Min. LNCS 7301 (2012), 122–134.
    • (2012) Adv. Knowl. Discov. Data Min. , vol.LNCS 7301 , pp. 122-134
    • Hoens, T.1    Qian, Q.2    Chawla, N.3    Zhou, Z.-H.4
  • 21
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • Ko, A.H., Sabourin, R., Britto Jr, A.S., From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 41:5 (2008), 1718–1731.
    • (2008) Pattern Recognit. , vol.41 , Issue.5 , pp. 1718-1731
    • Ko, A.H.1    Sabourin, R.2    Britto, A.S.3
  • 22
    • 85043605198 scopus 로고    scopus 로고
    • Learning from imbalanced data: open challenges and future directions
    • Krawczyk, B., Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5:4 (2016), 221–232.
    • (2016) Prog. Artif. Intell. , vol.5 , Issue.4 , pp. 221-232
    • Krawczyk, B.1
  • 27
    • 84888645340 scopus 로고    scopus 로고
    • On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed
    • López, V., Fernández, A., Herrera, F., On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed. Inf. Sci. 257 (2014), 1–13.
    • (2014) Inf. Sci. , vol.257 , pp. 1-13
    • López, V.1    Fernández, A.2    Herrera, F.3
  • 29
    • 84876917722 scopus 로고    scopus 로고
    • Study on the impact of partition-induced dataset shift on k-fold cross-validation
    • Moreno-Torres, J.G., Sáez, J.A., Herrera, F., Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans. Neural Netw. Learn. Syst. 23:8 (2012), 1304–1312.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.8 , pp. 1304-1312
    • Moreno-Torres, J.G.1    Sáez, J.A.2    Herrera, F.3
  • 30
    • 84942420474 scopus 로고    scopus 로고
    • A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches
    • Mousavi, R., Eftekhari, M., A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches. Appl. Soft Comput. 37 (2015), 652–666.
    • (2015) Appl. Soft Comput. , vol.37 , pp. 652-666
    • Mousavi, R.1    Eftekhari, M.2
  • 31
    • 84979464666 scopus 로고    scopus 로고
    • Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
    • Sáez, J.A., Krawczyk, B., Woźniak, M., Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 57 (2016), 164–178.
    • (2016) Pattern Recognit. , vol.57 , pp. 164-178
    • Sáez, J.A.1    Krawczyk, B.2    Woźniak, M.3
  • 34
    • 67049152595 scopus 로고    scopus 로고
    • Boosting for learning multiple classes with imbalanced class distribution
    • Proceedings of International Conference on Data Mining, ICDM
    • Y. Sun, M.S. Kamel, Y. Wang, Boosting for learning multiple classes with imbalanced class distribution, in: Proceedings of International Conference on Data Mining, ICDM, 2006, pp. 592–602.
    • (2006) , pp. 592-602
    • Sun, Y.1    Kamel, M.S.2    Wang, Y.3
  • 35
    • 85026440117 scopus 로고    scopus 로고
    • Semi-supervised learning on large-scale geotagged photos for situation recognition
    • Tang, M., Nie, F., Pongpaichet, S., Jain, R., Semi-supervised learning on large-scale geotagged photos for situation recognition. J. Vis. Commun. Image Represent. 48 (2017), 310–316.
    • (2017) J. Vis. Commun. Image Represent. , vol.48 , pp. 310-316
    • Tang, M.1    Nie, F.2    Pongpaichet, S.3    Jain, R.4
  • 37
    • 84864153221 scopus 로고    scopus 로고
    • Multiclass imbalance problems: analysis and potential solutions
    • Wang, S., Yao, X., Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 42:4 (2012), 1119–1130.
    • (2012) IEEE Trans. Syst. Man Cybern. – Part B: Cybern. , vol.42 , Issue.4 , pp. 1119-1130
    • Wang, S.1    Yao, X.2
  • 38
    • 77956198600 scopus 로고    scopus 로고
    • The impact of small disjuncts on classifier learning
    • Springer
    • Weiss, G.M., The impact of small disjuncts on classifier learning. Data Mining, 2010, Springer, 193–226.
    • (2010) Data Mining , pp. 193-226
    • Weiss, G.M.1
  • 39
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon, F., Individual comparisons by ranking methods. Biom. Bull. 1:6 (1945), 80–83.
    • (1945) Biom. Bull. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 40
    • 76249119922 scopus 로고    scopus 로고
    • On a new measure of classifier competence applied to the design of multiclassifier systems, Proceedings of International Conference on Image Analysis and Processing, ICIAP
    • T. Woloszynski, M. Kurzynski, On a new measure of classifier competence applied to the design of multiclassifier systems, Proceedings of International Conference on Image Analysis and Processing, ICIAP 2009 (2009) 995–1004.
    • (2009) , vol.2009 , pp. 995-1004
    • Woloszynski, T.1    Kurzynski, M.2
  • 41
    • 79958833224 scopus 로고    scopus 로고
    • A probabilistic model of classifier competence for dynamic ensemble selection
    • Woloszynski, T., Kurzynski, M., A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognit. 44:10 (2011), 2656–2668.
    • (2011) Pattern Recognit. , vol.44 , Issue.10 , pp. 2656-2668
    • Woloszynski, T.1    Kurzynski, M.2
  • 42
    • 84858073995 scopus 로고    scopus 로고
    • A measure of competence based on random classification for dynamic ensemble selection
    • Woloszynski, T., Kurzynski, M., Podsiadlo, P., Stachowiak, G.W., A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13:3 (2012), 207–213.
    • (2012) Inf. Fusion , vol.13 , Issue.3 , pp. 207-213
    • Woloszynski, T.1    Kurzynski, M.2    Podsiadlo, P.3    Stachowiak, G.W.4
  • 43
    • 84905560384 scopus 로고    scopus 로고
    • Forestexter: an efficient random forest algorithm for imbalanced text categorization
    • Wu, Q., Ye, Y., Zhang, H., Ng, M.K., Ho, S.-S., Forestexter: an efficient random forest algorithm for imbalanced text categorization. Knowl. Based Syst. 67 (2014), 105–116.
    • (2014) Knowl. Based Syst. , vol.67 , pp. 105-116
    • Wu, Q.1    Ye, Y.2    Zhang, H.3    Ng, M.K.4    Ho, S.-S.5
  • 45
    • 80255137251 scopus 로고    scopus 로고
    • Dynamic classifier ensemble model for customer classification with imbalanced class distribution
    • Xiao, J., Dynamic classifier ensemble model for customer classification with imbalanced class distribution. Expert Syst. Appl. 39:3 (2012), 3668–3675.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.3 , pp. 3668-3675
    • Xiao, J.1
  • 46
    • 84953638515 scopus 로고    scopus 로고
    • Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data
    • Yijing, L., Haixiang, G., Xiao, L., Yanan, L., Jinling, L., Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowl. Based Syst. 94 (2016), 88–104.
    • (2016) Knowl. Based Syst. , vol.94 , pp. 88-104
    • Yijing, L.1    Haixiang, G.2    Xiao, L.3    Yanan, L.4    Jinling, L.5
  • 47
    • 85017304883 scopus 로고    scopus 로고
    • An up-to-date comparison of state-of-the-art classification algorithms
    • Zhang, C., Liu, C., Zhang, X., Almpanidis, G., An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82 (2017), 128–150, 10.1016/j.eswa.2017.04.003.
    • (2017) Expert Syst. Appl. , vol.82 , pp. 128-150
    • Zhang, C.1    Liu, C.2    Zhang, X.3    Almpanidis, G.4
  • 48
    • 84971659662 scopus 로고    scopus 로고
    • Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data
    • Zhang, Z., Krawczyk, B., Garcìa, S., Rosales-Pérez, A., Herrera, F., Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl. Based Syst. 106 (2016), 251–263.
    • (2016) Knowl. Based Syst. , vol.106 , pp. 251-263
    • Zhang, Z.1    Krawczyk, B.2    Garcìa, S.3    Rosales-Pérez, A.4    Herrera, F.5
  • 49
    • 85017093028 scopus 로고    scopus 로고
    • Exploring the effectiveness of dynamic ensemble selection in the one-versus-one scheme
    • Zhang, Z., Luo, X., García, S., Tang, J., Herrera, F., Exploring the effectiveness of dynamic ensemble selection in the one-versus-one scheme. Knowl. Based Syst. 125 (2017), 53–63.
    • (2017) Knowl. Based Syst. , vol.125 , pp. 53-63
    • Zhang, Z.1    Luo, X.2    García, S.3    Tang, J.4    Herrera, F.5
  • 50
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou, Z.-H., Liu, X.-Y., Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18:1 (2006), 63–77.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.