-
1
-
-
84947127879
-
To combat multi-class imbalanced problems by means of over-sampling and boosting techniques
-
Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling and boosting techniques. Soft Comput. 19:12 (2015), 3369–3385.
-
(2015)
Soft Comput.
, vol.19
, Issue.12
, pp. 3369-3385
-
-
Abdi, L.1
Hashemi, S.2
-
2
-
-
84961631662
-
To combat multi-class imbalanced problems by means of over-sampling techniques
-
Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28:1 (2016), 238–251.
-
(2016)
IEEE Trans. Knowl. Data Eng.
, vol.28
, Issue.1
, pp. 238-251
-
-
Abdi, L.1
Hashemi, S.2
-
3
-
-
85052770793
-
Classification and Regression Trees
-
CRC Press
-
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., Classification and Regression Trees. 1984, CRC Press.
-
(1984)
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.A.4
-
4
-
-
84904400137
-
Dynamic selection of classifiers – a comprehensive review
-
Britto, A.S., Sabourin, R., Oliveira, L.E., Dynamic selection of classifiers – a comprehensive review. Pattern Recognit. 47:11 (2014), 3665–3680.
-
(2014)
Pattern Recognit.
, vol.47
, Issue.11
, pp. 3665-3680
-
-
Britto, A.S.1
Sabourin, R.2
Oliveira, L.E.3
-
5
-
-
0346586663
-
SMOTE: synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16 (2002), 321–357.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
6
-
-
84937927040
-
Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs
-
Datta, S., Das, S., Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs. Neural Netw. 70 (2015), 39–52.
-
(2015)
Neural Netw.
, vol.70
, pp. 39-52
-
-
Datta, S.1
Das, S.2
-
7
-
-
79960535211
-
A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
-
Derrac, J., García, S., Molina, D., Herrera, F., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1:1 (2011), 3–18.
-
(2011)
Swarm Evol. Comput.
, vol.1
, Issue.1
, pp. 3-18
-
-
Derrac, J.1
García, S.2
Molina, D.3
Herrera, F.4
-
8
-
-
45549107002
-
A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
-
Dos Santos, E.M., Sabourin, R., Maupin, P., A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit. 41:10 (2008), 2993–3009.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.10
, pp. 2993-3009
-
-
Dos Santos, E.M.1
Sabourin, R.2
Maupin, P.3
-
9
-
-
84874667219
-
Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches
-
Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F., Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl. Based Syst. 42 (2013), 97–110.
-
(2013)
Knowl. Based Syst.
, vol.42
, pp. 97-110
-
-
Fernández, A.1
López, V.2
Galar, M.3
Del Jesus, M.J.4
Herrera, F.5
-
10
-
-
84937401350
-
Multi-class boosting for imbalanced data
-
Fernández-Baldera, A., Buenaposada, J.M., Baumela, L., Multi-class boosting for imbalanced data. Proceedings of Iberian Conference on Pattern Recognition and Image Analysis, 2015, 57–64.
-
(2015)
Proceedings of Iberian Conference on Pattern Recognition and Image Analysis
, pp. 57-64
-
-
Fernández-Baldera, A.1
Buenaposada, J.M.2
Baumela, L.3
-
11
-
-
79953050208
-
A dynamic over-sampling procedure based on sensitivity for multi-class problems
-
Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P.A., A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit. 44:8 (2011), 1821–1833.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.8
, pp. 1821-1833
-
-
Fernández-Navarro, F.1
Hervás-Martínez, C.2
Gutiérrez, P.A.3
-
12
-
-
70349280929
-
An experimental comparison of performance measures for classification
-
Ferri, C., Hernández-Orallo, J., Modroiu, R., An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 30:1 (2009), 27–38.
-
(2009)
Pattern Recognit. Lett.
, vol.30
, Issue.1
, pp. 27-38
-
-
Ferri, C.1
Hernández-Orallo, J.2
Modroiu, R.3
-
13
-
-
84994890364
-
NMC: Nearest matrix classification – a new combination model for pruning one-vs-one ensembles by transforming the aggregation problem
-
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., NMC: Nearest matrix classification – a new combination model for pruning one-vs-one ensembles by transforming the aggregation problem. Inf. Fusion 36 (2017), 26–51.
-
(2017)
Inf. Fusion
, vol.36
, pp. 26-51
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
14
-
-
50549093573
-
On the k-nn performance in a challenging scenario of imbalance and overlapping
-
García, V., Mollineda, R.A., Sánchez, J.S., On the k-nn performance in a challenging scenario of imbalance and overlapping. Pattern Anal. Appl. 11:3–4 (2008), 269–280.
-
(2008)
Pattern Anal. Appl.
, vol.11
, Issue.3-4
, pp. 269-280
-
-
García, V.1
Mollineda, R.A.2
Sánchez, J.S.3
-
15
-
-
85009165593
-
Learning from class-imbalanced data: review of methods and applications
-
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G., Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73 (2017), 220–239, 10.1016/j.eswa.2016.12.035.
-
(2017)
Expert Syst. Appl.
, vol.73
, pp. 220-239
-
-
Haixiang, G.1
Yijing, L.2
Shang, J.3
Mingyun, G.4
Yuanyue, H.5
Bing, G.6
-
16
-
-
84962476443
-
BPSO-adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification
-
Haixiang, G., Yijing, L., Yanan, L., Xiao, L., Jinling, L., BPSO-adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification. Eng. Appl. Artif. Intell. 49 (2016), 176–193.
-
(2016)
Eng. Appl. Artif. Intell.
, vol.49
, pp. 176-193
-
-
Haixiang, G.1
Yijing, L.2
Yanan, L.3
Xiao, L.4
Jinling, L.5
-
17
-
-
68549133155
-
Learning from imbalanced data
-
He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
18
-
-
0001589146
-
Rank methods for combination of independent experiments in analysis of variance
-
Hodges, J., Lehmann, E.L., et al. Rank methods for combination of independent experiments in analysis of variance. Ann. Math. Stat. 33:2 (1962), 482–497.
-
(1962)
Ann. Math. Stat.
, vol.33
, Issue.2
, pp. 482-497
-
-
Hodges, J.1
Lehmann, E.L.2
-
19
-
-
84861442505
-
Building decision trees for the multi-class imbalance problem
-
Hoens, T., Qian, Q., Chawla, N., Zhou, Z.-H., Building decision trees for the multi-class imbalance problem. Adv. Knowl. Discov. Data Min. LNCS 7301 (2012), 122–134.
-
(2012)
Adv. Knowl. Discov. Data Min.
, vol.LNCS 7301
, pp. 122-134
-
-
Hoens, T.1
Qian, Q.2
Chawla, N.3
Zhou, Z.-H.4
-
20
-
-
0032021555
-
On combining classifiers
-
Kittler, J., Hatef, M., Duin, R.P., Matas, J., On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20:3 (1998), 226–239.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.3
Matas, J.4
-
21
-
-
38349135448
-
From dynamic classifier selection to dynamic ensemble selection
-
Ko, A.H., Sabourin, R., Britto Jr, A.S., From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 41:5 (2008), 1718–1731.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.5
, pp. 1718-1731
-
-
Ko, A.H.1
Sabourin, R.2
Britto, A.S.3
-
22
-
-
85043605198
-
Learning from imbalanced data: open challenges and future directions
-
Krawczyk, B., Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5:4 (2016), 221–232.
-
(2016)
Prog. Artif. Intell.
, vol.5
, Issue.4
, pp. 221-232
-
-
Krawczyk, B.1
-
23
-
-
64049108468
-
Exploratory undersampling for class-imbalance learning
-
Liu, X.-Y., Wu, J., Zhou, Z.-H., Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 39:2 (2009), 539–550.
-
(2009)
IEEE Trans. Syst. Man Cybern. – Part B: Cybern.
, vol.39
, Issue.2
, pp. 539-550
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
24
-
-
84949742707
-
Action2Activity: recognizing complex activities from sensor data
-
Liu, Y., Nie, L., Han, L., Zhang, L., Rosenblum, D.S., Action2Activity: recognizing complex activities from sensor data. Proceedings of International Conference on Artificial Intelligence, 2015, 1617–1623.
-
(2015)
Proceedings of International Conference on Artificial Intelligence
, pp. 1617-1623
-
-
Liu, Y.1
Nie, L.2
Han, L.3
Zhang, L.4
Rosenblum, D.S.5
-
25
-
-
85007196017
-
Fortune teller: predicting your career path
-
Liu, Y., Zhang, L., Nie, L., Yan, Y., Rosenblum, D.S., Fortune teller: predicting your career path. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, 201–207.
-
(2016)
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
, pp. 201-207
-
-
Liu, Y.1
Zhang, L.2
Nie, L.3
Yan, Y.4
Rosenblum, D.S.5
-
26
-
-
85006165885
-
Urban water quality prediction based on multi-task multi-view learning
-
Liu, Y., Zheng, Y., Liang, Y., Liu, S., Rosenblum, D.S., Urban water quality prediction based on multi-task multi-view learning. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, 2576–2582.
-
(2016)
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
, pp. 2576-2582
-
-
Liu, Y.1
Zheng, Y.2
Liang, Y.3
Liu, S.4
Rosenblum, D.S.5
-
27
-
-
84888645340
-
On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed
-
López, V., Fernández, A., Herrera, F., On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed. Inf. Sci. 257 (2014), 1–13.
-
(2014)
Inf. Sci.
, vol.257
, pp. 1-13
-
-
López, V.1
Fernández, A.2
Herrera, F.3
-
28
-
-
79957888449
-
Probabilistic approach to the dynamic ensemble selection using measures of competence and diversity of base classifiers
-
Lysiak, R., Kurzynski, M., Woloszynski, T., Probabilistic approach to the dynamic ensemble selection using measures of competence and diversity of base classifiers. Proceedings of International Conference on Hybrid Artificial Intelligence Systems, 2011, 229–236.
-
(2011)
Proceedings of International Conference on Hybrid Artificial Intelligence Systems
, pp. 229-236
-
-
Lysiak, R.1
Kurzynski, M.2
Woloszynski, T.3
-
29
-
-
84876917722
-
Study on the impact of partition-induced dataset shift on k-fold cross-validation
-
Moreno-Torres, J.G., Sáez, J.A., Herrera, F., Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans. Neural Netw. Learn. Syst. 23:8 (2012), 1304–1312.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.8
, pp. 1304-1312
-
-
Moreno-Torres, J.G.1
Sáez, J.A.2
Herrera, F.3
-
30
-
-
84942420474
-
A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches
-
Mousavi, R., Eftekhari, M., A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches. Appl. Soft Comput. 37 (2015), 652–666.
-
(2015)
Appl. Soft Comput.
, vol.37
, pp. 652-666
-
-
Mousavi, R.1
Eftekhari, M.2
-
31
-
-
84979464666
-
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
-
Sáez, J.A., Krawczyk, B., Woźniak, M., Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 57 (2016), 164–178.
-
(2016)
Pattern Recognit.
, vol.57
, pp. 164-178
-
-
Sáez, J.A.1
Krawczyk, B.2
Woźniak, M.3
-
32
-
-
84949125253
-
Empirical analysis of assessments metrics for multi-class imbalance learning on the back-propagation context
-
Sánchez-Crisostomo, J.P., Alejo, R., López-González, E., Valdovinos, R.M., Pacheco-Sánchez, J.H., Empirical analysis of assessments metrics for multi-class imbalance learning on the back-propagation context. Proceedings of International Conference in Swarm Intelligence, 2014, 17–23.
-
(2014)
Proceedings of International Conference in Swarm Intelligence
, pp. 17-23
-
-
Sánchez-Crisostomo, J.P.1
Alejo, R.2
López-González, E.3
Valdovinos, R.M.4
Pacheco-Sánchez, J.H.5
-
33
-
-
34848892731
-
A dynamic classifier selection method to build ensembles using accuracy and diversity
-
Santana, A., Soares, R.G., Canuto, A.M., de Souto, M.C., A dynamic classifier selection method to build ensembles using accuracy and diversity. Proceedings of Ninth Brazilian Symposium on Neural Networks, SBRN’06, 2006, 36–41.
-
(2006)
Proceedings of Ninth Brazilian Symposium on Neural Networks, SBRN’06
, pp. 36-41
-
-
Santana, A.1
Soares, R.G.2
Canuto, A.M.3
de Souto, M.C.4
-
34
-
-
67049152595
-
Boosting for learning multiple classes with imbalanced class distribution
-
Proceedings of International Conference on Data Mining, ICDM
-
Y. Sun, M.S. Kamel, Y. Wang, Boosting for learning multiple classes with imbalanced class distribution, in: Proceedings of International Conference on Data Mining, ICDM, 2006, pp. 592–602.
-
(2006)
, pp. 592-602
-
-
Sun, Y.1
Kamel, M.S.2
Wang, Y.3
-
35
-
-
85026440117
-
Semi-supervised learning on large-scale geotagged photos for situation recognition
-
Tang, M., Nie, F., Pongpaichet, S., Jain, R., Semi-supervised learning on large-scale geotagged photos for situation recognition. J. Vis. Commun. Image Represent. 48 (2017), 310–316.
-
(2017)
J. Vis. Commun. Image Represent.
, vol.48
, pp. 310-316
-
-
Tang, M.1
Nie, F.2
Pongpaichet, S.3
Jain, R.4
-
36
-
-
85033708822
-
KEEL 3.0: an open source software for multi-stage analysis in data mining
-
Triguero, I., González, S., Moyano, J., García, S., Alcalá-Fdez, J., Luengo, J., Fernández, A., del Jesus, M., Sánchez, L., Herrera, F., KEEL 3.0: an open source software for multi-stage analysis in data mining. Int. J. Comput. Intell. Syst. 10 (2017), 1238–1249.
-
(2017)
Int. J. Comput. Intell. Syst.
, vol.10
, pp. 1238-1249
-
-
Triguero, I.1
González, S.2
Moyano, J.3
García, S.4
Alcalá-Fdez, J.5
Luengo, J.6
Fernández, A.7
del Jesus, M.8
Sánchez, L.9
Herrera, F.10
-
37
-
-
84864153221
-
Multiclass imbalance problems: analysis and potential solutions
-
Wang, S., Yao, X., Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 42:4 (2012), 1119–1130.
-
(2012)
IEEE Trans. Syst. Man Cybern. – Part B: Cybern.
, vol.42
, Issue.4
, pp. 1119-1130
-
-
Wang, S.1
Yao, X.2
-
38
-
-
77956198600
-
The impact of small disjuncts on classifier learning
-
Springer
-
Weiss, G.M., The impact of small disjuncts on classifier learning. Data Mining, 2010, Springer, 193–226.
-
(2010)
Data Mining
, pp. 193-226
-
-
Weiss, G.M.1
-
39
-
-
0001884644
-
Individual comparisons by ranking methods
-
Wilcoxon, F., Individual comparisons by ranking methods. Biom. Bull. 1:6 (1945), 80–83.
-
(1945)
Biom. Bull.
, vol.1
, Issue.6
, pp. 80-83
-
-
Wilcoxon, F.1
-
40
-
-
76249119922
-
-
On a new measure of classifier competence applied to the design of multiclassifier systems, Proceedings of International Conference on Image Analysis and Processing, ICIAP
-
T. Woloszynski, M. Kurzynski, On a new measure of classifier competence applied to the design of multiclassifier systems, Proceedings of International Conference on Image Analysis and Processing, ICIAP 2009 (2009) 995–1004.
-
(2009)
, vol.2009
, pp. 995-1004
-
-
Woloszynski, T.1
Kurzynski, M.2
-
41
-
-
79958833224
-
A probabilistic model of classifier competence for dynamic ensemble selection
-
Woloszynski, T., Kurzynski, M., A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognit. 44:10 (2011), 2656–2668.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.10
, pp. 2656-2668
-
-
Woloszynski, T.1
Kurzynski, M.2
-
42
-
-
84858073995
-
A measure of competence based on random classification for dynamic ensemble selection
-
Woloszynski, T., Kurzynski, M., Podsiadlo, P., Stachowiak, G.W., A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13:3 (2012), 207–213.
-
(2012)
Inf. Fusion
, vol.13
, Issue.3
, pp. 207-213
-
-
Woloszynski, T.1
Kurzynski, M.2
Podsiadlo, P.3
Stachowiak, G.W.4
-
43
-
-
84905560384
-
Forestexter: an efficient random forest algorithm for imbalanced text categorization
-
Wu, Q., Ye, Y., Zhang, H., Ng, M.K., Ho, S.-S., Forestexter: an efficient random forest algorithm for imbalanced text categorization. Knowl. Based Syst. 67 (2014), 105–116.
-
(2014)
Knowl. Based Syst.
, vol.67
, pp. 105-116
-
-
Wu, Q.1
Ye, Y.2
Zhang, H.3
Ng, M.K.4
Ho, S.-S.5
-
44
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Philip, S.Y., et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 14:1 (2008), 1–37.
-
(2008)
Knowl. Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Philip, S.Y.10
-
45
-
-
80255137251
-
Dynamic classifier ensemble model for customer classification with imbalanced class distribution
-
Xiao, J., Dynamic classifier ensemble model for customer classification with imbalanced class distribution. Expert Syst. Appl. 39:3 (2012), 3668–3675.
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.3
, pp. 3668-3675
-
-
Xiao, J.1
-
46
-
-
84953638515
-
Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data
-
Yijing, L., Haixiang, G., Xiao, L., Yanan, L., Jinling, L., Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowl. Based Syst. 94 (2016), 88–104.
-
(2016)
Knowl. Based Syst.
, vol.94
, pp. 88-104
-
-
Yijing, L.1
Haixiang, G.2
Xiao, L.3
Yanan, L.4
Jinling, L.5
-
47
-
-
85017304883
-
An up-to-date comparison of state-of-the-art classification algorithms
-
Zhang, C., Liu, C., Zhang, X., Almpanidis, G., An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82 (2017), 128–150, 10.1016/j.eswa.2017.04.003.
-
(2017)
Expert Syst. Appl.
, vol.82
, pp. 128-150
-
-
Zhang, C.1
Liu, C.2
Zhang, X.3
Almpanidis, G.4
-
48
-
-
84971659662
-
Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data
-
Zhang, Z., Krawczyk, B., Garcìa, S., Rosales-Pérez, A., Herrera, F., Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl. Based Syst. 106 (2016), 251–263.
-
(2016)
Knowl. Based Syst.
, vol.106
, pp. 251-263
-
-
Zhang, Z.1
Krawczyk, B.2
Garcìa, S.3
Rosales-Pérez, A.4
Herrera, F.5
-
49
-
-
85017093028
-
Exploring the effectiveness of dynamic ensemble selection in the one-versus-one scheme
-
Zhang, Z., Luo, X., García, S., Tang, J., Herrera, F., Exploring the effectiveness of dynamic ensemble selection in the one-versus-one scheme. Knowl. Based Syst. 125 (2017), 53–63.
-
(2017)
Knowl. Based Syst.
, vol.125
, pp. 53-63
-
-
Zhang, Z.1
Luo, X.2
García, S.3
Tang, J.4
Herrera, F.5
-
50
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Zhou, Z.-H., Liu, X.-Y., Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18:1 (2006), 63–77.
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
|