-
1
-
-
27944460950
-
Total margin based adaptive fuzzy support vector machines for multiview face recognition
-
Man and Cybernetics, Waikoloa, HI, USA, 10-12 October
-
Liu, Y.H.; Chen, Y.T. Total margin based adaptive fuzzy support vector machines for multiview face recognition. In Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, USA, 10-12 October 2005; Volume 2, pp. 1704-1711
-
(2005)
Proceedings of the 2005 IEEE International Conference on Systems
, vol.2
, pp. 1704-1711
-
-
Liu, Y.H.1
Chen, Y.T.2
-
2
-
-
84977676336
-
Self-training in significance space of support vectors for imbalanced biomedical event data
-
Munkhdalai, T.; Namsrai, O.E.; Ryu, K.H. Self-training in significance space of support vectors for imbalanced biomedical event data. BMC Bioinform. 2015, 16, 1-8
-
(2015)
BMC Bioinform
, vol.16
, pp. 1-8
-
-
Munkhdalai, T.1
Namsrai, O.E.2
Ryu, K.H.3
-
3
-
-
84925452064
-
Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem
-
Siers, M.; Islam, M.Z. Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem. Inf. Syst. 2015, 51, 62-71
-
(2015)
Inf. Syst
, vol.51
, pp. 62-71
-
-
Siers, M.1
Islam, M.Z.2
-
4
-
-
84907442805
-
Imbalanced Hyperspectral Image Classification Based on Maximum Margin
-
Sun, T.; Jiao, L.; Feng, J.; Liu, F.; Zhang, X. Imbalanced Hyperspectral Image Classification Based on Maximum Margin. IEEE Geosci. Remote Sens. Lett. 2015, 12, 522-526
-
(2015)
IEEE Geosci. Remote Sens. Lett
, vol.12
, pp. 522-526
-
-
Sun, T.1
Jiao, L.2
Feng, J.3
Liu, F.4
Zhang, X.5
-
5
-
-
84862515469
-
A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches
-
Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2012, 42, 463-484
-
(2012)
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev
, vol.42
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
6
-
-
77950231896
-
MSMOTE: Improving Classification Performance When Training Data is Imbalanced
-
WCSE '09, Washington, DC, USA, 28-30 October
-
Hu, S.G.; Liang, Y.F.; Ma, L.T.; He, Y. MSMOTE: Improving Classification Performance When Training Data is Imbalanced. In Proceedings of the 2009 Second InternationalWorkshop on Computer Science and Engineering, WCSE '09, Washington, DC, USA, 28-30 October 2009; Volume 2, pp. 13-17
-
(2009)
Proceedings of the 2009 Second InternationalWorkshop on Computer Science and Engineering
, vol.2
, pp. 13-17
-
-
Hu, S.G.1
Liang, Y.F.2
Ma, L.T.3
He, Y.4
-
7
-
-
33845536164
-
The Class Imbalance Problem: A Systematic Study
-
Japkowicz, N.; Stephen, S. The Class Imbalance Problem: A Systematic Study. Intell. Data Anal. 2002, 6, 429-449
-
(2002)
Intell. Data Anal
, vol.6
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
8
-
-
67650505046
-
Diversity analysis on imbalanced data sets by using ensemble models
-
Nashville, TN, USA, 30March-2 April
-
Wang, S.; Yao, X. Diversity analysis on imbalanced data sets by using ensemble models. In Proceedings of the IEEE Symposiumon Computational Intelligence and DataMining, Nashville, TN, USA, 30March-2 April 2009; pp. 324-331
-
(2009)
Proceedings of the IEEE Symposiumon Computational Intelligence and DataMining
, pp. 324-331
-
-
Wang, S.1
Yao, X.2
-
9
-
-
85043605198
-
Learning from imbalanced data: Open challenges and future directions
-
Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221-232
-
(2016)
Prog. Artif. Intell
, vol.5
, pp. 221-232
-
-
Krawczyk, B.1
-
10
-
-
84979464666
-
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
-
Sáez, J.A.; Krawczyk, B.;Wózniak, M. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 2016, 57, 164-178
-
(2016)
Pattern Recognit
, vol.57
, pp. 164-178
-
-
Sáez, J.A.1
Krawczyk, B.2
Wózniak, M.3
-
12
-
-
70349617264
-
Evolutionary Undersampling for Classification with Imbalanced Datasets: Proposals and Taxonomy
-
García, S.; Herrera, F. Evolutionary Undersampling for Classification with Imbalanced Datasets: Proposals and Taxonomy. Evol. Comput. 2009, 17, 275-306
-
(2009)
Evol. Comput
, vol.17
, pp. 275-306
-
-
García, S.1
Herrera, F.2
-
13
-
-
77949543086
-
Cost-sensitive Learning and the Class Imbalanced Problem
-
Sammut, C., Ed.; Springer: Berlin, Germany
-
Ling, C.X.; Sheng, V.S. Cost-sensitive Learning and the Class Imbalanced Problem. In Encyclopedia of Machine Learning; Sammut, C., Ed.; Springer: Berlin, Germany, 2008
-
(2008)
Encyclopedia of Machine Learning
-
-
Ling, C.X.1
Sheng, V.S.2
-
14
-
-
63449090301
-
Learning on the border: Active learning in imbalanced data classification
-
Lisbon, Portugal, 6-10 November
-
Ertekin, S.; Huang, J.; Bottou, L.; Giles, C.L. Learning on the border: Active learning in imbalanced data classification. In Proceedings of the Sixteenth ACMConference on Conference on Information and Knowledge Management, Lisbon, Portugal, 6-10 November 2007; pp. 127-136
-
(2007)
Proceedings of the Sixteenth ACMConference on Conference on Information and Knowledge Management
, pp. 127-136
-
-
Ertekin, S.1
Huang, J.2
Bottou, L.3
Giles, C.L.4
-
15
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Zhou, Z.; Liu, X.Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 2006, 18, 63-77
-
(2006)
IEEE Trans. Knowl. Data Eng
, vol.18
, pp. 63-77
-
-
Zhou, Z.1
Liu, X.Y.2
-
16
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Sun, Y.; Kamel, M.S.; Wong, A.K.; Wang, Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 2007, 40, 3358-3378
-
(2007)
Pattern Recognit
, vol.40
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.3
Wang, Y.4
-
18
-
-
85028702271
-
Kernel based online learning for imbalance multiclass classification
-
Ding, S.; Mirza, B.; Lin, Z.; Cao, J.; Lai, X.; Nguyen, T.V.; Sepulveda, J. Kernel based online learning for imbalance multiclass classification. Neurocomputing 2018, 277, 139-148
-
(2018)
Neurocomputing
, vol.277
, pp. 139-148
-
-
Ding, S.1
Mirza, B.2
Lin, Z.3
Cao, J.4
Lai, X.5
Nguyen, T.V.6
Sepulveda, J.7
-
19
-
-
27144489164
-
A Tutorial on Support Vector Machines for Pattern Recognition
-
Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121-167
-
(1998)
Data Min. Knowl. Discov
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
20
-
-
22944452794
-
Applying Support VectorMachines to Imbalanced Datasets
-
Boulicaut:J.F., Esposito, F., Giannotti, F., Pedreschi, D., Eds.; Springer: Berlin/Heidelberg, Germany
-
Akbani, R.; Kwek, S.; Japkowicz, N. Applying Support VectorMachines to Imbalanced Datasets. InMachine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings; Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 39-50
-
(2004)
InMachine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004;Proceedings
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
21
-
-
79957964024
-
Margin-Based Over-Sampling Method for Learning from Imbalanced Datasets
-
Springer: Berlin/Heidelberg, Germany
-
Fan, X.N.; Tang, K.; Weise, T. Margin-Based Over-Sampling Method for Learning from Imbalanced Datasets. In Advances in Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6635, pp. 309-320
-
(2011)
Advances in Knowledge Discovery and Data Mining
, vol.6635
, pp. 309-320
-
-
Fan, X.N.1
Tang, K.2
Weise, T.3
-
22
-
-
84904800514
-
A resampling ensemble algorithm for classification of imbalance problems
-
Qian, Y.; Liang, Y.; Li, M.; Feng, G.; Shi, X. A resampling ensemble algorithm for classification of imbalance problems. Neurocomputing 2014, 143, 57-67
-
(2014)
Neurocomputing
, vol.143
, pp. 57-67
-
-
Qian, Y.1
Liang, Y.2
Li, M.3
Feng, G.4
Shi, X.5
-
23
-
-
70450182721
-
EasyEnsemble and Feature Selection for Imbalance Data Sets
-
Systems Biology and Intelligent Computing, IJCBS '09, Washington, DC, USA, 3-5 August
-
Liu, T.Y. EasyEnsemble and Feature Selection for Imbalance Data Sets. In Proceedings of the 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, IJCBS '09, Washington, DC, USA, 3-5 August 2009; pp. 517-520
-
(2009)
Proceedings of the 2009 International Joint Conference on Bioinformatics
, pp. 517-520
-
-
Liu, T.Y.1
-
24
-
-
85036623598
-
Weight-Based Rotation Forest for Hyperspectral Image Classification
-
Feng, W.; Bao, W. Weight-Based Rotation Forest for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2167-2171
-
(2017)
IEEE Geosci. Remote Sens. Lett
, vol.14
, pp. 2167-2171
-
-
Feng, W.1
Bao, W.2
-
25
-
-
84963593700
-
Ensemble vs. Data Sampling: Which Option Is Best Suited to Improve Classification Performance of Imbalanced Bioinformatics Data?
-
Vietri sul Mare, Italy, 9-11 November
-
Khoshgoftaar, T.M.; Fazelpour, A.; Dittman, D.J.; Napolitano, A. Ensemble vs. Data Sampling: Which Option Is Best Suited to Improve Classification Performance of Imbalanced Bioinformatics Data? In Proceedings of the IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul Mare, Italy, 9-11 November 2015; pp. 705-712
-
(2015)
In Proceedings of the IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI)
, pp. 705-712
-
-
Khoshgoftaar, T.M.1
Fazelpour, A.2
Dittman, D.J.3
Napolitano, A.4
-
26
-
-
84922643075
-
Neighbourhood sampling in bagging for imbalanced data
-
Blaszczynski, J.; Stefanowski, J. Neighbourhood sampling in bagging for imbalanced data. Neurocomputing 2015, 150, 529-542
-
(2015)
Neurocomputing
, vol.150
, pp. 529-542
-
-
Blaszczynski, J.1
Stefanowski, J.2
-
27
-
-
0032280519
-
Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods
-
Schapire, R.E.; Freund, Y.; Bartlett, P.; Lee, W.S. Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. Ann. Stat. 1998, 26, 1651-2080
-
(1998)
Ann. Stat
, vol.26
, pp. 1651-2080
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
28
-
-
84905560678
-
Exploiting diversity for optimizing margin distribution in ensemble learning
-
Hu, Q.; Li, L.;Wu, X.; Schaefer, G.; Yu, D. Exploiting diversity for optimizing margin distribution in ensemble learning. Knowl. Based Syst. 2014, 67, 90-104
-
(2014)
Knowl. Based Syst
, vol.67
, pp. 90-104
-
-
Hu, Q.1
Li, L.2
Wu, X.3
Schaefer, G.4
Yu, D.5
-
29
-
-
26444456082
-
Boosting Parallel Perceptrons for Label Noise Reduction in Classification Problems
-
Springer: Berlin/Heidelberg, Germany
-
Cantador, I.; Dorronsoro, J. Boosting Parallel Perceptrons for Label Noise Reduction in Classification Problems. In Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3562, pp. 586-593
-
(2005)
Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach
, vol.3562
, pp. 586-593
-
-
Cantador, I.1
Dorronsoro, J.2
-
30
-
-
85047066347
-
-
Thesis, University of Bordeaux Montaigne, Pessac, France
-
Feng, W. Investigation of Training Data Issues in Ensemble Classification Based on Margin Concept: Application to Land Cover Mapping, Ph.D. Thesis, University of Bordeaux Montaigne, Pessac, France, 2017
-
(2017)
Investigation of Training Data Issues in Ensemble Classification Based on Margin Concept: Application to Land Cover Mapping, Ph.D
-
-
Feng, W.1
-
31
-
-
84956598937
-
Class noise removal and correction for image classification using ensemble margin
-
Quebec City, QC, Canada, 27-30 September
-
Feng, W.; Boukir, S. Class noise removal and correction for image classification using ensemble margin. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27-30 September 2015; pp. 4698-4702
-
(2015)
Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP)
, pp. 4698-4702
-
-
Feng, W.1
Boukir, S.2
-
32
-
-
84962609076
-
Identification and correction of mislabeled training data for land cover classification based on ensemble margin
-
Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26-31 July
-
Feng, W.; Boukir, S.; Guo, L. Identification and correction of mislabeled training data for land cover classification based on ensemble margin. In Proceedings of the IEEE International, Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26-31 July 2015; pp. 4991-4994
-
(2015)
Proceedings of the IEEE International
, pp. 4991-4994
-
-
Feng, W.1
Boukir, S.2
Guo, L.3
-
33
-
-
73849133622
-
Class Conditional Nearest Neighbor for Large Margin Instance Selection
-
Marchiori, E. Class Conditional Nearest Neighbor for Large Margin Instance Selection. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 364-370
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, pp. 364-370
-
-
Marchiori, E.1
-
34
-
-
85047072934
-
-
Ph.D. Thesis, Northeastern University, Boston, MA, USA
-
Alshawabkeh, M. Hypothesis Margin Based Weighting for Feature Selection Using Boosting: Theory, Algorithms and Applications. Ph.D. Thesis, Northeastern University, Boston, MA, USA, 2013
-
(2013)
Hypothesis Margin Based Weighting for Feature Selection Using Boosting: Theory, Algorithms and Applications
-
-
Alshawabkeh, M.1
-
36
-
-
84867873453
-
Dynamic classifier ensemble using classification confidence
-
Li, L.J.; Zou, B.; Hu, Q.H.;Wu, X.Q.; Yu, D.R. Dynamic classifier ensemble using classification confidence. Neurocomputing 2013, 99, 581-591
-
(2013)
Neurocomputing
, vol.99
, pp. 581-591
-
-
Li, L.J.1
Zou, B.2
Hu, Q.H.3
Wu, X.Q.4
Yu, D.R.5
-
37
-
-
84862796962
-
Margin distribution based bagging pruning
-
Xie, Z.X.; Xu, Y.; Hu, Q.H.; Zhu, P.F. Margin distribution based bagging pruning. Neurocomputing 2012, 85, 11-19
-
(2012)
Neurocomputing
, vol.85
, pp. 11-19
-
-
Xie, Z.X.1
Xu, Y.2
Hu, Q.H.3
Zhu, P.F.4
-
38
-
-
0348222721
-
New Applications of Ensembles of Classifiers
-
Barandela, R.; Sánchez, J.S.; Valdovinos, R.M. New Applications of Ensembles of Classifiers. Pattern Anal. Appl. 2003, 6, 245-256
-
(2003)
Pattern Anal. Appl
, vol.6
, pp. 245-256
-
-
Barandela, R.1
Sánchez, J.S.2
Valdovinos, R.M.3
-
39
-
-
1442356040
-
A Multiple Resampling Method for Learning from Imbalanced Data Sets
-
Estabrooks, A.; Jo, T.; Japkowicz, N. A Multiple Resampling Method for Learning from Imbalanced Data Sets. Comput. Intell. 2004, 20, 18-36
-
(2004)
Comput. Intell
, vol.20
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
40
-
-
0346586663
-
SMOTE: Synthetic Minority Over-sampling Technique
-
Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Int. Res. 2002, 16, 321-357
-
(2002)
J. Artif. Int. Res
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
41
-
-
27144531570
-
A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data
-
Batista, G.E.A.P.A.; Prati, R.C.; Monard, M.C. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. SIGKDD Explor. Newsl. 2004, 6, 20-29
-
(2004)
SIGKDD Explor. Newsl
, vol.6
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
42
-
-
85037992344
-
Addressing the Classification with Imbalanced Data: Open Problems and New Challenges on Class Distribution
-
Wroclaw, Poland, 23-25 May 2011; Corchado, E.; Kurzynski, M., Wozniak, M., Eds.; Springer: Berlin/Heidelberg, Germmany
-
Fernández, A.; García, S.; Herrera, F., Addressing the Classification with Imbalanced Data: Open Problems and New Challenges on Class Distribution. In Hybrid Artificial Intelligent Systems: Proceedings of the HAIS 2011 6th International Conference, Wroclaw, Poland, 23-25 May 2011; Corchado, E.; Kurzynski, M., Wozniak, M., Eds.; Springer: Berlin/Heidelberg, Germmany, 2011; Part I; pp. 1-10
-
(2011)
In Hybrid Artificial Intelligent Systems: Proceedings of the HAIS 2011 6th International Conference
, pp. 1-10
-
-
Fernández, A.1
García, S.2
Herrera, F.3
-
43
-
-
34547659409
-
KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction
-
Washington, DC, USA, 21 August
-
Zhang, J.; Mani, I. KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. In Proceedings of the ICML'2003 Workshop on Learning from Imbalanced Datasets, Washington, DC, USA, 21 August 2003
-
(2003)
Proceedings of the ICML'2003 Workshop on Learning from Imbalanced Datasets
-
-
Zhang, J.1
Mani, I.2
-
44
-
-
33947284406
-
Boosted Classification Trees and Class Probability/Quantile Estimation
-
Mease, D.; Wyner, A.J.; Buja, A. Boosted Classification Trees and Class Probability/Quantile Estimation. J. Mach. Learn. Res. 2007, 8, 409-439
-
(2007)
J. Mach. Learn. Res
, vol.8
, pp. 409-439
-
-
Mease, D.1
Wyner, A.J.2
Buja, A.3
-
45
-
-
84874667219
-
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
-
Fernández, A.; López, V.; Galar, M.; del Jesus, M.J.; Herrera, F. Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowl. Based Syst. 2013, 42, 97-110
-
(2013)
Knowl. Based Syst
, vol.42
, pp. 97-110
-
-
Fernández, A.1
López, V.2
Galar, M.3
del Jesus, M.J.4
Herrera, F.5
-
46
-
-
84928328671
-
Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin
-
Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. J. Photogramm. Remote Sens. 2015, 105, 155-168
-
(2015)
J. Photogramm. Remote Sens
, vol.105
, pp. 155-168
-
-
Mellor, A.1
Boukir, S.2
Haywood, A.3
Jones, S.4
-
47
-
-
84864153221
-
Multiclass Imbalance Problems: Analysis and Potential Solutions
-
Wang, S.; Yao, X. Multiclass Imbalance Problems: Analysis and Potential Solutions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2012, 42, 1119-1130
-
(2012)
IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
, vol.42
, pp. 1119-1130
-
-
Wang, S.1
Yao, X.2
-
48
-
-
0032355984
-
Classification by pairwise coupling
-
Hastie, T.; Batista, G.E. Classification by pairwise coupling. Ann. Stat. 1998, 26, 451-471
-
(1998)
Ann. Stat
, vol.26
, pp. 451-471
-
-
Hastie, T.1
Batista, G.E.2
-
49
-
-
56749117943
-
In Defense of One-Vs-All Classification
-
Rifkin, R.; Klautau, A. In Defense of One-Vs-All Classification. J. Mach. Learn. Res. 2004, 5, 101-141
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 101-141
-
-
Rifkin, R.1
Klautau, A.2
-
50
-
-
84908478736
-
Ensemble Methods for Class Imbalance Learning
-
He, H, Ma, Y., Eds.;Wiley: New York, NY, USA
-
Liu, X.Y.; Zhou, Z.H. Ensemble Methods for Class Imbalance Learning. In Imbalanced Learning: Foundations, Algorithms, and Applications; He, H, Ma, Y., Eds.;Wiley: New York, NY, USA, 2013; pp. 61-82
-
(2013)
Imbalanced Learning: Foundations, Algorithms, and Applications
, pp. 61-82
-
-
Liu, X.Y.1
Zhou, Z.H.2
-
51
-
-
9444297357
-
SMOTEBoost: Improving Prediction of the Minority Class in Boosting
-
Springer: Berlin/Heidelberg
-
Chawla, N.V.; Lazarevic, A.; Hall, L.O.; Bowyer, K.W. SMOTEBoost: Improving Prediction of the Minority Class in Boosting. In Knowledge Discovery in Databases: PKDD 2003; Springer: Berlin/Heidelberg, 2003; Volume 2838; pp. 107-119
-
(2003)
Knowledge Discovery in Databases: PKDD 2003
, vol.2838
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
52
-
-
84878457382
-
Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and AdaBoost techniques
-
Thanathamathee, P.; Lursinsap, C. Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and AdaBoost techniques. Pattern Recognit. Lett. 2013, 34, 1339-1347
-
(2013)
Pattern Recognit. Lett
, vol.34
, pp. 1339-1347
-
-
Thanathamathee, P.1
Lursinsap, C.2
-
53
-
-
74549206140
-
SPSM: A new hybrid data clustering algorithm for nonlinear data analysis
-
Wattanachon, U.; Lursinsap, C. SPSM: A new hybrid data clustering algorithm for nonlinear data analysis. Int. J. Pattern Recognit. Artif. Intell. 2009, 23, 1701-1737
-
(2009)
Int. J. Pattern Recognit. Artif. Intell
, vol.23
, pp. 1701-1737
-
-
Wattanachon, U.1
Lursinsap, C.2
-
54
-
-
84964203940
-
Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy
-
Efron, B.; Tibshirani, R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Stat. Sci. 1986, 1, 54-75
-
(1986)
Stat. Sci
, vol.1
, pp. 54-75
-
-
Efron, B.1
Tibshirani, R.2
-
56
-
-
72949118881
-
RUSBoost: A Hybrid Approach to Alleviating Class Imbalance
-
Seiffert, C.; Khoshgoftaar, T.M.; Hulse, J.V.; Napolitano, A. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 185-197
-
(2010)
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum
, vol.40
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.M.2
Hulse, J.V.3
Napolitano, A.4
-
57
-
-
84937523920
-
Random Balance: Ensembles of variable priors classifiers for imbalanced data
-
Díez-Pastor, J.; Rodríguez, J.; García-Osorio, C.; Kuncheva, L.I. Random Balance: Ensembles of variable priors classifiers for imbalanced data. Knowl. Based Syst. 2015, 85, 96-111
-
(2015)
Knowl. Based Syst
, vol.85
, pp. 96-111
-
-
Díez-Pastor, J.1
Rodríguez, J.2
García-Osorio, C.3
Kuncheva, L.I.4
-
58
-
-
84941559528
-
Diversity Techniques Improve the Performance of the Best Imbalance Learning Ensembles
-
Díez-Pastor, J.F.; Rodríguez, J.J.; García-Osorio, C.I.; Kuncheva, L.I. Diversity Techniques Improve the Performance of the Best Imbalance Learning Ensembles. Inf. Sci. 2015, 325, 98-117
-
(2015)
Inf. Sci
, vol.325
, pp. 98-117
-
-
Díez-Pastor, J.F.1
Rodríguez, J.J.2
García-Osorio, C.I.3
Kuncheva, L.I.4
-
59
-
-
84881072864
-
EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
-
Galar, M.; Fernández, A.; Barrenechea, E.; Herrera, F. EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 2013, 46, 3460-3471
-
(2013)
Pattern Recognit
, vol.46
, pp. 3460-3471
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Herrera, F.4
-
60
-
-
78650438646
-
Ensemble Approach for the Classification of Imbalanced Data
-
Nicholson, A.; Li, X., Eds.; Springer: Berlin/Heidelberg, Germany
-
Nikulin, V.; McLachlan, G.J.; Ng, S.K., Ensemble Approach for the Classification of Imbalanced Data. In AI 2009: Advances in Artificial Intelligence: Proceedings of the 22nd Australasian Joint Conference, Melbourne, Australia, 1-4 December 2009; Nicholson, A.; Li, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 291-300
-
(2009)
In AI 2009: Advances in Artificial Intelligence: Proceedings of the 22nd Australasian Joint Conference, Melbourne, Australia, 1-4 December 2009
, pp. 291-300
-
-
Nikulin, V.1
McLachlan, G.J.2
Ng, S.K.3
-
61
-
-
34247205823
-
Multi-Class Learning by Smoothed Boosting
-
Jin, R.; Zhang, J. Multi-Class Learning by Smoothed Boosting. Mach. Learn. 2007, 67, 207-227
-
(2007)
Mach. Learn
, vol.67
, pp. 207-227
-
-
Jin, R.1
Zhang, J.2
-
62
-
-
79955468283
-
Comparing Boosting and Bagging Techniques with Noisy and Imbalanced Data
-
Khoshgoftaar, T.M.; Hulse, J.V.; Napolitano, A. Comparing Boosting and Bagging Techniques with Noisy and Imbalanced Data. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2011, 41, 552-568
-
(2011)
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum
, vol.41
, pp. 552-568
-
-
Khoshgoftaar, T.M.1
Hulse, J.V.2
Napolitano, A.3
-
63
-
-
84880350376
-
Extending Bagging for Imbalanced Data
-
Springer: Berlin/Heidelberg, Germany
-
Blaszczynski, J.; Stefanowski, J.; Idkowiak, L. Extending Bagging for Imbalanced Data. In Proceeding of the Eighth CORES (Core Ordering and Reporting Enterprise System), Springer Series on Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2013; Volume 226, pp. 269-278
-
(2013)
Proceeding of the Eighth CORES (Core Ordering and Reporting Enterprise System), Springer Series on Advances in Intelligent Systems and Computing
, vol.226
, pp. 269-278
-
-
Blaszczynski, J.1
Stefanowski, J.2
Idkowiak, L.3
-
64
-
-
85029881657
-
Using sub-sampling and ensemble clustering techniques to improve performance of imbalanced classification
-
Nejatian, S.; Parvin, H.; Faraji, E. Using sub-sampling and ensemble clustering techniques to improve performance of imbalanced classification. Neurocomputing 2018, 276, 55-66
-
(2018)
Neurocomputing
, vol.276
, pp. 55-66
-
-
Nejatian, S.1
Parvin, H.2
Faraji, E.3
-
65
-
-
77950294204
-
Roughly Balanced Bagging for Imbalanced Data
-
Hido, S.; Kashima, H.; Takahashi, Y. Roughly Balanced Bagging for Imbalanced Data. Stat. Anal. Data Min. 2009, 2, 412-426
-
(2009)
Stat. Anal. Data Min
, vol.2
, pp. 412-426
-
-
Hido, S.1
Kashima, H.2
Takahashi, Y.3
-
66
-
-
84926525100
-
Coupling different methods for overcoming the class imbalance problem
-
Nanni, L.; Fantozzi, C.; Lazzarini, N. Coupling different methods for overcoming the class imbalance problem. Neurocomputing 2015, 158, 48-61
-
(2015)
Neurocomputing
, vol.158
, pp. 48-61
-
-
Nanni, L.1
Fantozzi, C.2
Lazzarini, N.3
-
67
-
-
84890363076
-
Ensembles of (alpha)-Trees for Imbalanced Classification Problems
-
Park, Y.; Ghosh, J. Ensembles of (alpha)-Trees for Imbalanced Classification Problems. IEEE Trans. Knowl. Data Eng. 2014, 26, 131-143
-
(2014)
IEEE Trans. Knowl. Data Eng
, vol.26
, pp. 131-143
-
-
Park, Y.1
Ghosh, J.2
-
68
-
-
85156210264
-
-
MIT Press: Cambridge, MA, USA
-
Crammer, K.; Gilad-bachrach, R.; Navot, A.; Tishby, N. Margin Analysis of the LVQ Algorithm. Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2002; pp. 462-469
-
(2002)
Margin Analysis of the LVQ Algorithm. Advances in Neural Information Processing Systems
, pp. 462-469
-
-
Crammer, K.1
Gilad-bachrach, R.2
Navot, A.3
Tishby, N.4
-
69
-
-
50149090008
-
An empirical study on diversity measures and margin theory for ensembles of classifiers
-
Quebec City, QC, Canada, 9-12 July
-
Kapp, M.; Sabourin, R.; Maupin, P. An empirical study on diversity measures and margin theory for ensembles of classifiers. In Proceedings of the 10th International Conference on Information Fusion, Quebec City, QC, Canada, 9-12 July 2007; pp. 1-8
-
(2007)
Proceedings of the 10th International Conference on Information Fusion
, pp. 1-8
-
-
Kapp, M.1
Sabourin, R.2
Maupin, P.3
-
70
-
-
84873737900
-
Margin-based ordered aggregation for ensemble pruning
-
Guo, L.; Boukir, S. Margin-based ordered aggregation for ensemble pruning. Pattern Recognit. Lett. 2013, 34, 603-609
-
(2013)
Pattern Recognit. Lett
, vol.34
, pp. 603-609
-
-
Guo, L.1
Boukir, S.2
-
71
-
-
0003619255
-
-
Technical Report 460; Statistics Department, University of California at Berkeley: Berkeley, CA, USA
-
Breiman, L. Bias, Variance, and Arcing Classifiers; Technical Report 460; Statistics Department, University of California at Berkeley: Berkeley, CA, USA, 1996
-
(1996)
Bias, Variance, and Arcing Classifiers
-
-
Breiman, L.1
-
72
-
-
34250727580
-
The Relationship Between Precision-Recall and ROC Curves
-
Pennsylvania, PA, USA, 25-29 June 2006
-
Davis, J.; Goadrich, M. The Relationship Between Precision-Recall and ROC Curves. In Proceedings of the 23rd International Conference on Machine Learning, ICML '06, Pennsylvania, PA, USA, 25-29 June 2006, pp. 233-240
-
In Proceedings of the 23rd International Conference on Machine Learning, ICML '06
, pp. 233-240
-
-
Davis, J.1
Goadrich, M.2
-
73
-
-
0002872346
-
Bias Plus Variance Decomposition for Zero-One Loss Functions
-
Morgan Kaufmann Publishers: San Mateo, CA, USA
-
Kohavi, R.; Wolpert, D.H. Bias Plus Variance Decomposition for Zero-One Loss Functions. In Proceedings of the Thirteenth International on Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1996; pp. 275-283
-
(1996)
Proceedings of the Thirteenth International on Machine Learning
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.H.2
-
74
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1-30
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
75
-
-
58149287952
-
An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons
-
Garcia, S.; Herrera, F. An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons. J. Mach. Learn. Res. 2008, 9, 2677-2694
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 2677-2694
-
-
Garcia, S.1
Herrera, F.2
-
77
-
-
84861810464
-
Inverse random under sampling for class imbalance problem and its application to multi-label classification
-
Tahir, M.A.; Kittler, J.; Yan, F. Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognit. 2012, 45, 3738-3750
-
(2012)
Pattern Recognit
, vol.45
, pp. 3738-3750
-
-
Tahir, M.A.1
Kittler, J.2
Yan, F.3
-
78
-
-
0037403516
-
Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy
-
Kuncheva, L.I.; Whitaker, C.J. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Mach. Learn. 2003, 51, 181-207
-
(2003)
Mach. Learn
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
|