메뉴 건너뛰기




Volumn 158, Issue , 2018, Pages 81-93

An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme

Author keywords

Classification algorithms; Decomposition methods for multi class data; Multi class imbalance learning; Multi class imbalanced data classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CODES (SYMBOLS); LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 85048303100     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2018.05.037     Document Type: Article
Times cited : (170)

References (56)
  • 1
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Sep.
    • He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284 Sep.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 2
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla, N., Japkowicz, N., Kolcz, A., Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl. 6:1 (2004), 1–6.
    • (2004) ACM SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.1    Japkowicz, N.2    Kolcz, A.3
  • 3
    • 85009165593 scopus 로고    scopus 로고
    • Learning from class-imbalanced data: review of methods and applications
    • Haixiang, G., et al., Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73 (2017), 220–239.
    • (2017) Expert Syst. Appl. , vol.73 , pp. 220-239
    • Haixiang, G.1
  • 7
    • 84864153221 scopus 로고    scopus 로고
    • Multi-class imbalance problems: analysis and potential solutions
    • Wang, S., Yao, X., Multi-class imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybernetics Part B 42:4 (2012), 1119–1130.
    • (2012) IEEE Trans. Syst. Man Cybernetics Part B , vol.42 , Issue.4 , pp. 1119-1130
    • Wang, S.1    Yao, X.2
  • 8
    • 84861442505 scopus 로고    scopus 로고
    • Building Decision Trees for the Multi-Class Imbalance Problem, Advances in Knowledge Discovery and Data Mining
    • Springer Berlin Heidelberg
    • Hoens, T.R., Qian, Q., Chawla, N.V., et al. Building Decision Trees for the Multi-Class Imbalance Problem, Advances in Knowledge Discovery and Data Mining. 2012, Springer, Berlin Heidelberg, 122–134.
    • (2012) , pp. 122-134
    • Hoens, T.R.1    Qian, Q.2    Chawla, N.V.3
  • 11
    • 84922450521 scopus 로고    scopus 로고
    • Constructing a multi-class classifier using one-against-one approach with different binary classifiers
    • Kang, S., Cho, S., Kang, P., Constructing a multi-class classifier using one-against-one approach with different binary classifiers. Neurocomputing 149 (2015), 677–682.
    • (2015) Neurocomputing , vol.149 , pp. 677-682
    • Kang, S.1    Cho, S.2    Kang, P.3
  • 12
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.E., A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55:1 (1997), 119–139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 14
    • 77958028886 scopus 로고    scopus 로고
    • Multi-class AdaBoost
    • Zhu, J., Zou, H., Rosset, S., et al. Multi-class AdaBoost. Stat. Interface 2:3 (2006), 349–360.
    • (2006) Stat. Interface , vol.2 , Issue.3 , pp. 349-360
    • Zhu, J.1    Zou, H.2    Rosset, S.3
  • 16
    • 84893666096 scopus 로고    scopus 로고
    • Multi-class boosting with asymmetric binary weak-learners
    • Fernández, B.A., Baumela., L., Multi-class boosting with asymmetric binary weak-learners. Pattern Recognit. 47:5 (2014), 2080–2090.
    • (2014) Pattern Recognit. , vol.47 , Issue.5 , pp. 2080-2090
    • Fernández, B.A.1    Baumela, L.2
  • 17
    • 84947918649 scopus 로고    scopus 로고
    • Learning When Negative Examples Abound, Machine Learning: ECML-97
    • Springer Berlin Heidelberg
    • Kubat, M., Holte, R., Matwin, S., Learning When Negative Examples Abound, Machine Learning: ECML-97. 1997, Springer, Berlin Heidelberg, 146–153.
    • (1997) , pp. 146-153
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 18
    • 0004217877 scopus 로고
    • Information Retrieval
    • Butterworths London, U.K.
    • Rijsbergen, V., Information Retrieval. 1979, Butterworths, London, U.K.
    • (1979)
    • Rijsbergen, V.1
  • 19
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A.P., The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30:7 (1997), 1145–1159.
    • (1997) Pattern Recognit. , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 20
    • 0000298776 scopus 로고
    • Error-correcting output codes: A general method for improving multiclass inductive learning programs
    • 395
    • Dietterich, T., Bakiri, G., Error-correcting output codes: A general method for improving multiclass inductive learning programs. AAAI, 1994, 395 395.
    • (1994) AAAI , pp. 395
    • Dietterich, T.1    Bakiri, G.2
  • 21
    • 33645983632 scopus 로고    scopus 로고
    • Improving multiclass pattern recognition by the combination of two strategies
    • Garcia, P.N., Ortiz, B.D., Improving multiclass pattern recognition by the combination of two strategies. IEEE Trans. Pattern Anal Mach. Intell. 28:6 (2006), 1001–1006.
    • (2006) IEEE Trans. Pattern Anal Mach. Intell. , vol.28 , Issue.6 , pp. 1001-1006
    • Garcia, P.N.1    Ortiz, B.D.2
  • 22
  • 24
    • 0033220832 scopus 로고    scopus 로고
    • Meta Analysis of classification algorithms for pattern recognition
    • Sohn, S.Y., Meta Analysis of classification algorithms for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21:11 (1999), 1137–1144.
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , Issue.11 , pp. 1137-1144
    • Sohn, S.Y.1
  • 25
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim, T.S., Loh, W.Y., Shih, Y.S., A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 40:3 (2000), 203–228.
    • (2000) Mach. Learn. , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.S.1    Loh, W.Y.2    Shih, Y.S.3
  • 26
    • 0038636391 scopus 로고    scopus 로고
    • A comparative assessment of classification methods
    • Kiang, M.Y., A comparative assessment of classification methods. Decis. Support Syst. 35:4 (2003), 441–454.
    • (2003) Decis. Support Syst. , vol.35 , Issue.4 , pp. 441-454
    • Kiang, M.Y.1
  • 28
    • 84874022028 scopus 로고    scopus 로고
    • Dynamic selection approaches for multiple classifier systems
    • Cavalin, P.R., Sabourin, R., Suen, C.Y., Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22:3 (2013), 673–688.
    • (2013) Neural Comput. Appl. , vol.22 , Issue.3 , pp. 673-688
    • Cavalin, P.R.1    Sabourin, R.2    Suen, C.Y.3
  • 29
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu, L., Krzyzak, A., Suen, C.Y., Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Cybernetics 22:3 (1992), 418–435.
    • (1992) IEEE Trans. Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 32
    • 84887611642 scopus 로고    scopus 로고
    • Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
    • Lysiak, R., Kurzynski, M., Woloszynski, T., Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 126:126 (2014), 29–35.
    • (2014) Neurocomputing , vol.126 , Issue.126 , pp. 29-35
    • Lysiak, R.1    Kurzynski, M.2    Woloszynski, T.3
  • 33
    • 56049126929 scopus 로고    scopus 로고
    • Learning Decision Trees for Unbalanced Data, European Conference on Machine Learning and Knowledge Discovery in Databases
    • Springer-Verlag
    • Cieslak, D.A., Chawla, N.V., Learning Decision Trees for Unbalanced Data, European Conference on Machine Learning and Knowledge Discovery in Databases. 2008, Springer-Verlag, 241–256.
    • (2008) , pp. 241-256
    • Cieslak, D.A.1    Chawla, N.V.2
  • 34
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R.E., Singer, Y., Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37:3 (1999), 297–336.
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 35
    • 0003463297 scopus 로고
    • Adaptation in Natural and Artificial Systems
    • University of Michigan Press Ann Arbor, MI
    • Holland, J.H., Adaptation in Natural and Artificial Systems. 1975, University of Michigan Press, Ann Arbor, MI.
    • (1975)
    • Holland, J.H.1
  • 36
    • 84864116736 scopus 로고    scopus 로고
    • Negative correlation learning for class imbalance problems
    • Wang, S., Yao, X., Negative correlation learning for class imbalance problems. IEEE Trans. Neural Netw., 2011.
    • (2011) IEEE Trans. Neural Netw.
    • Wang, S.1    Yao, X.2
  • 37
    • 85049428667 scopus 로고    scopus 로고
    • Benchmarking sampling techniques for imbalance learning in churn prediction Customer churn prediction
    • Zhu, B., Baesens, B., Backiel, A., et al., Benchmarking sampling techniques for imbalance learning in churn prediction Customer churn prediction. J. Oper. Res. Soc., 2017, 1–17.
    • (2017) J. Oper. Res. Soc. , pp. 1-17
    • Zhu, B.1    Baesens, B.2    Backiel, A.3
  • 39
    • 84921817000 scopus 로고    scopus 로고
    • A novel ensemble method for classifying imbalanced data
    • Sun, Z., Song, Q., Zhu, X., et al. A novel ensemble method for classifying imbalanced data. Pattern Recognit. 48:5 (2015), 1623–1637.
    • (2015) Pattern Recognit. , vol.48 , Issue.5 , pp. 1623-1637
    • Sun, Z.1    Song, Q.2    Zhu, X.3
  • 40
    • 84926525100 scopus 로고    scopus 로고
    • Coupling different methods for overcoming the class imbalance problem
    • Nanni, L., Fantozzi, C., Lazzarini, N., Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158 (2015), 48–61.
    • (2015) Neurocomputing , vol.158 , pp. 48-61
    • Nanni, L.1    Fantozzi, C.2    Lazzarini, N.3
  • 41
    • 84953638515 scopus 로고    scopus 로고
    • Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data
    • Li, Y., Guo, H., Liu, X., et al. Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowl-Based Syst. 94 (2016), 88–104.
    • (2016) Knowl-Based Syst. , vol.94 , pp. 88-104
    • Li, Y.1    Guo, H.2    Liu, X.3
  • 42
    • 84971659662 scopus 로고    scopus 로고
    • Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data
    • Zhang, Z., Krawczyk, B., Garcìa, S., et al. Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl-Based Syst. 106 (2016), 251–263.
    • (2016) Knowl-Based Syst. , vol.106 , pp. 251-263
    • Zhang, Z.1    Krawczyk, B.2    Garcìa, S.3
  • 43
    • 84979464666 scopus 로고    scopus 로고
    • Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
    • Sáez, J.A., Krawczyk, B., Woźniak, M., Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 57 (2016), 164–178.
    • (2016) Pattern Recognit. , vol.57 , pp. 164-178
    • Sáez, J.A.1    Krawczyk, B.2    Woźniak, M.3
  • 44
    • 79953050208 scopus 로고    scopus 로고
    • A dynamic over-sampling procedure based on sensitivity for multi-class problems
    • Fernández, N.F., Hervás, M.C., Antonio, G.P., A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit. 44:8 (2011), 1821–1833.
    • (2011) Pattern Recognit. , vol.44 , Issue.8 , pp. 1821-1833
    • Fernández, N.F.1    Hervás, M.C.2    Antonio, G.P.3
  • 45
    • 85009476105 scopus 로고    scopus 로고
    • Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble
    • Sun, J., Fujita, H., Chen, P., et al. Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble. Knowl-Based Syst. 120 (2016), 4–14.
    • (2016) Knowl-Based Syst. , vol.120 , pp. 4-14
    • Sun, J.1    Fujita, H.2    Chen, P.3
  • 46
    • 85015734131 scopus 로고    scopus 로고
    • Posterior probability based ensemble strategy using optimizing decision directed acyclic graph for multi-class classification
    • Zhou, L., Fujita, H., Posterior probability based ensemble strategy using optimizing decision directed acyclic graph for multi-class classification. Inf. Sci. 400:401 (2017), 142–156.
    • (2017) Inf. Sci. , vol.400 , Issue.401 , pp. 142-156
    • Zhou, L.1    Fujita, H.2
  • 47
    • 85042332829 scopus 로고    scopus 로고
    • Imbalanced Enterprise Credit Evaluation with DTE-SBD: Decision Tree Ensemble Based on SMOTE and Bagging with Differentiated Sampling Rates
    • Sun, J., Lang, J., Fujita, H., et al., Imbalanced Enterprise Credit Evaluation with DTE-SBD: Decision Tree Ensemble Based on SMOTE and Bagging with Differentiated Sampling Rates. Inf. Sci. 425 (2018), 76–91.
    • (2018) Inf. Sci. , vol.425 , pp. 76-91
    • Sun, J.1    Lang, J.2    Fujita, H.3
  • 48
    • 84867715887 scopus 로고    scopus 로고
    • SMOTE-RSB, * : a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory
    • Ramentol, E., Caballero, Y., Bello, R., et al. SMOTE-RSB, * : a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl. Inf. Syst. 33:2 (2012), 245–265.
    • (2012) Knowl. Inf. Syst. , vol.33 , Issue.2 , pp. 245-265
    • Ramentol, E.1    Caballero, Y.2    Bello, R.3
  • 49
    • 84975252806 scopus 로고    scopus 로고
    • IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor classification
    • Ramentol, E., Vluymans, S., Verbiest, N., et al. IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor classification. IEEE Trans. Fuzzy Syst. 23:5 (2015), 1622–1637.
    • (2015) IEEE Trans. Fuzzy Syst. , vol.23 , Issue.5 , pp. 1622-1637
    • Ramentol, E.1    Vluymans, S.2    Verbiest, N.3
  • 50
    • 85042332829 scopus 로고    scopus 로고
    • Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates
    • Sun, Jie, Lang, Jie, Fujita, Hamido, Li, Hui, Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates. Inf. Sci. 425 (2018), 76–91.
    • (2018) Inf. Sci. , vol.425 , pp. 76-91
    • Sun, J.1    Lang, J.2    Fujita, H.3    Li, H.4
  • 51
    • 85009476105 scopus 로고    scopus 로고
    • Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble
    • Sun, Jie, Fujita, Hamido, Chen, Peng, Li, Hui, Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble. Knowl-Based Syst. 120 (2017), 4–14.
    • (2017) Knowl-Based Syst. , vol.120 , pp. 4-14
    • Sun, J.1    Fujita, H.2    Chen, P.3    Li, H.4
  • 52
    • 84945567357 scopus 로고    scopus 로고
    • Predicting the listing status of Chinese listed companies with multi-class classification models
    • Zhou, Ligang, Tam, KwoPing, Fujita, Hamido, Predicting the listing status of Chinese listed companies with multi-class classification models. Inf. Sci. 328 (2016), 222–236.
    • (2016) Inf. Sci. , vol.328 , pp. 222-236
    • Zhou, L.1    Tam, K.2    Fujita, H.3
  • 53
    • 85049483656 scopus 로고    scopus 로고
    • Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach
    • Vluymans, Sarah, Fernández, Alberto, Cornelis, YvanSaeysChris, Herrera, Francisco, Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach. Knowl. Inf. Syst. 1 (2018), 1–30.
    • (2018) Knowl. Inf. Syst. , vol.1 , pp. 1-30
    • Vluymans, S.1    Fernández, A.2    Cornelis, Y.3    Herrera, F.4
  • 54
    • 85017304883 scopus 로고    scopus 로고
    • An up-to-date comparison of state-of-the-art classification algorithms
    • Zhang, C., Liu, C., Zhang, X., et al. An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82 (2017), 128–150.
    • (2017) Expert Syst. Appl. , vol.82 , pp. 128-150
    • Zhang, C.1    Liu, C.2    Zhang, X.3
  • 55
    • 84861604521 scopus 로고
    • Multiple comparisons using rank sums
    • Dunn, O.J., Multiple comparisons using rank sums. Technometrics 6:3 (1964), 241–252.
    • (1964) Technometrics , vol.6 , Issue.3 , pp. 241-252
    • Dunn, O.J.1
  • 56
    • 0004086493 scopus 로고    scopus 로고
    • Applied Nonparametric Statistics
    • (2nd ed.) Cengage Learning
    • Daniel, W.W., Applied Nonparametric Statistics. (2nd ed.), 2000, Cengage Learning.
    • (2000)
    • Daniel, W.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.