-
1
-
-
68549133155
-
Learning from imbalanced data
-
Sep.
-
He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284 Sep.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
2
-
-
27144549260
-
Editorial: special issue on learning from imbalanced data sets
-
Chawla, N., Japkowicz, N., Kolcz, A., Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl. 6:1 (2004), 1–6.
-
(2004)
ACM SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.1
Japkowicz, N.2
Kolcz, A.3
-
3
-
-
85009165593
-
Learning from class-imbalanced data: review of methods and applications
-
Haixiang, G., et al., Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73 (2017), 220–239.
-
(2017)
Expert Syst. Appl.
, vol.73
, pp. 220-239
-
-
Haixiang, G.1
-
4
-
-
0346586663
-
SMOTE: synthetic minority oversampling technique
-
Chawla, N.V., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., SMOTE: synthetic minority oversampling technique. J. Artif. Intell. Res. (JAIR), 2002, 321–357.
-
(2002)
J. Artif. Intell. Res. (JAIR)
, pp. 321-357
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
5
-
-
56349089205
-
ADASYN adaptive synthetic sampling approach for imbalanced learning
-
He, H.B., Bai, Y., Garcia, E.A., Li, S.T., ADASYN adaptive synthetic sampling approach for imbalanced learning. Proceedings of International Joint Conference on Neural Networks (IJCNN), 2008, 1322–1328.
-
(2008)
Proceedings of International Joint Conference on Neural Networks (IJCNN)
, pp. 1322-1328
-
-
He, H.B.1
Bai, Y.2
Garcia, E.A.3
Li, S.T.4
-
6
-
-
84878083672
-
Exploratory under-sampling for class-imbalance learning
-
Liu, X.Y., Wu, J.X., Zhou, Z.H., Exploratory under-sampling for class-imbalance learning. Proceedings of International Conference on Data Mining (ICDM), 2006.
-
(2006)
Proceedings of International Conference on Data Mining (ICDM)
-
-
Liu, X.Y.1
Wu, J.X.2
Zhou, Z.H.3
-
7
-
-
84864153221
-
Multi-class imbalance problems: analysis and potential solutions
-
Wang, S., Yao, X., Multi-class imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybernetics Part B 42:4 (2012), 1119–1130.
-
(2012)
IEEE Trans. Syst. Man Cybernetics Part B
, vol.42
, Issue.4
, pp. 1119-1130
-
-
Wang, S.1
Yao, X.2
-
8
-
-
84861442505
-
Building Decision Trees for the Multi-Class Imbalance Problem, Advances in Knowledge Discovery and Data Mining
-
Springer Berlin Heidelberg
-
Hoens, T.R., Qian, Q., Chawla, N.V., et al. Building Decision Trees for the Multi-Class Imbalance Problem, Advances in Knowledge Discovery and Data Mining. 2012, Springer, Berlin Heidelberg, 122–134.
-
(2012)
, pp. 122-134
-
-
Hoens, T.R.1
Qian, Q.2
Chawla, N.V.3
-
9
-
-
78149474114
-
Multi-class pattern classification in imbalanced data
-
IEEE Computer Society
-
Ghanem, A.S., Venkatesh, S., West, G., Multi-class pattern classification in imbalanced data. International Conference on Pattern Recognition, 2010, IEEE Computer Society, 2881–2884.
-
(2010)
International Conference on Pattern Recognition
, pp. 2881-2884
-
-
Ghanem, A.S.1
Venkatesh, S.2
West, G.3
-
10
-
-
84894671343
-
Learning imbalanced multi-class data with optimal dichotomy weights
-
Liu, X.Y., Li, Q.Q., Zhou, ZH., Learning imbalanced multi-class data with optimal dichotomy weights. IEEE 13th International Conference on Data Mining (IEEE ICDM), 2013, 478–487.
-
(2013)
IEEE 13th International Conference on Data Mining (IEEE ICDM)
, pp. 478-487
-
-
Liu, X.Y.1
Li, Q.Q.2
Zhou, Z.H.3
-
11
-
-
84922450521
-
Constructing a multi-class classifier using one-against-one approach with different binary classifiers
-
Kang, S., Cho, S., Kang, P., Constructing a multi-class classifier using one-against-one approach with different binary classifiers. Neurocomputing 149 (2015), 677–682.
-
(2015)
Neurocomputing
, vol.149
, pp. 677-682
-
-
Kang, S.1
Cho, S.2
Kang, P.3
-
12
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., Schapire, R.E., A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55:1 (1997), 119–139.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
13
-
-
67049152595
-
Boosting for learning multiple classes with imbalanced class distribution
-
Sun, Y., Kamel, M.S., Wang, Y., Boosting for learning multiple classes with imbalanced class distribution. Proceedings of the 6th International Conference on Data Mining, 2006, 592–602.
-
(2006)
Proceedings of the 6th International Conference on Data Mining
, pp. 592-602
-
-
Sun, Y.1
Kamel, M.S.2
Wang, Y.3
-
14
-
-
77958028886
-
Multi-class AdaBoost
-
Zhu, J., Zou, H., Rosset, S., et al. Multi-class AdaBoost. Stat. Interface 2:3 (2006), 349–360.
-
(2006)
Stat. Interface
, vol.2
, Issue.3
, pp. 349-360
-
-
Zhu, J.1
Zou, H.2
Rosset, S.3
-
15
-
-
79959396934
-
Negative correlation learning for classification ensembles
-
Wang, S., Chen, H., Yao, X., Negative correlation learning for classification ensembles. Proceedings of International Joint Conference on Neural Networks, WCCI, 2010, 2893–2900.
-
(2010)
Proceedings of International Joint Conference on Neural Networks, WCCI
, pp. 2893-2900
-
-
Wang, S.1
Chen, H.2
Yao, X.3
-
16
-
-
84893666096
-
Multi-class boosting with asymmetric binary weak-learners
-
Fernández, B.A., Baumela., L., Multi-class boosting with asymmetric binary weak-learners. Pattern Recognit. 47:5 (2014), 2080–2090.
-
(2014)
Pattern Recognit.
, vol.47
, Issue.5
, pp. 2080-2090
-
-
Fernández, B.A.1
Baumela, L.2
-
17
-
-
84947918649
-
Learning When Negative Examples Abound, Machine Learning: ECML-97
-
Springer Berlin Heidelberg
-
Kubat, M., Holte, R., Matwin, S., Learning When Negative Examples Abound, Machine Learning: ECML-97. 1997, Springer, Berlin Heidelberg, 146–153.
-
(1997)
, pp. 146-153
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
18
-
-
0004217877
-
Information Retrieval
-
Butterworths London, U.K.
-
Rijsbergen, V., Information Retrieval. 1979, Butterworths, London, U.K.
-
(1979)
-
-
Rijsbergen, V.1
-
19
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley, A.P., The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30:7 (1997), 1145–1159.
-
(1997)
Pattern Recognit.
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
20
-
-
0000298776
-
Error-correcting output codes: A general method for improving multiclass inductive learning programs
-
395
-
Dietterich, T., Bakiri, G., Error-correcting output codes: A general method for improving multiclass inductive learning programs. AAAI, 1994, 395 395.
-
(1994)
AAAI
, pp. 395
-
-
Dietterich, T.1
Bakiri, G.2
-
21
-
-
33645983632
-
Improving multiclass pattern recognition by the combination of two strategies
-
Garcia, P.N., Ortiz, B.D., Improving multiclass pattern recognition by the combination of two strategies. IEEE Trans. Pattern Anal Mach. Intell. 28:6 (2006), 1001–1006.
-
(2006)
IEEE Trans. Pattern Anal Mach. Intell.
, vol.28
, Issue.6
, pp. 1001-1006
-
-
Garcia, P.N.1
Ortiz, B.D.2
-
22
-
-
51749105657
-
OAHO: an effective algorithm for multi-class learning from imbalanced data
-
IEEE
-
Murphey, Y.L., Wang, H., Ou, G., et al. OAHO: an effective algorithm for multi-class learning from imbalanced data. International Joint Conference on Neural Networks, 2007, IEEE, 406–411.
-
(2007)
International Joint Conference on Neural Networks
, pp. 406-411
-
-
Murphey, Y.L.1
Wang, H.2
Ou, G.3
-
23
-
-
77957947784
-
Learning in imbalanced relational data
-
Ghanem, S., Venkatesh, S., West, G., Learning in imbalanced relational data. International Conference on Pattern Recognition, 2008, 1–4.
-
(2008)
International Conference on Pattern Recognition
, pp. 1-4
-
-
Ghanem, S.1
Venkatesh, S.2
West, G.3
-
24
-
-
0033220832
-
Meta Analysis of classification algorithms for pattern recognition
-
Sohn, S.Y., Meta Analysis of classification algorithms for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21:11 (1999), 1137–1144.
-
(1999)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.21
, Issue.11
, pp. 1137-1144
-
-
Sohn, S.Y.1
-
25
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
Lim, T.S., Loh, W.Y., Shih, Y.S., A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 40:3 (2000), 203–228.
-
(2000)
Mach. Learn.
, vol.40
, Issue.3
, pp. 203-228
-
-
Lim, T.S.1
Loh, W.Y.2
Shih, Y.S.3
-
26
-
-
0038636391
-
A comparative assessment of classification methods
-
Kiang, M.Y., A comparative assessment of classification methods. Decis. Support Syst. 35:4 (2003), 441–454.
-
(2003)
Decis. Support Syst.
, vol.35
, Issue.4
, pp. 441-454
-
-
Kiang, M.Y.1
-
27
-
-
0031121318
-
Combination of multiple classifiers using local accuracy estimates
-
Woods, K., Kegelmeyer, W.P., Bowyer, K., Combination of multiple classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. 19:4 (1997), 405–410.
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.19
, Issue.4
, pp. 405-410
-
-
Woods, K.1
Kegelmeyer, W.P.2
Bowyer, K.3
-
28
-
-
84874022028
-
Dynamic selection approaches for multiple classifier systems
-
Cavalin, P.R., Sabourin, R., Suen, C.Y., Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22:3 (2013), 673–688.
-
(2013)
Neural Comput. Appl.
, vol.22
, Issue.3
, pp. 673-688
-
-
Cavalin, P.R.1
Sabourin, R.2
Suen, C.Y.3
-
29
-
-
0026860706
-
Methods of combining multiple classifiers and their applications to handwriting recognition
-
Xu, L., Krzyzak, A., Suen, C.Y., Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Cybernetics 22:3 (1992), 418–435.
-
(1992)
IEEE Trans. Cybernetics
, vol.22
, Issue.3
, pp. 418-435
-
-
Xu, L.1
Krzyzak, A.2
Suen, C.Y.3
-
30
-
-
0028259890
-
Decision combination in multiple classifier systems
-
Ho, T.K., Hull, J.J., Srihari, S.N., Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16:1 (1994), 66–75.
-
(1994)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.16
, Issue.1
, pp. 66-75
-
-
Ho, T.K.1
Hull, J.J.2
Srihari, S.N.3
-
31
-
-
0032021555
-
On combining classifiers
-
Kittler, J., Hatef, M., Duin, R.P.W., et al. On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20:3 (1998), 226–239.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
-
32
-
-
84887611642
-
Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
-
Lysiak, R., Kurzynski, M., Woloszynski, T., Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 126:126 (2014), 29–35.
-
(2014)
Neurocomputing
, vol.126
, Issue.126
, pp. 29-35
-
-
Lysiak, R.1
Kurzynski, M.2
Woloszynski, T.3
-
33
-
-
56049126929
-
Learning Decision Trees for Unbalanced Data, European Conference on Machine Learning and Knowledge Discovery in Databases
-
Springer-Verlag
-
Cieslak, D.A., Chawla, N.V., Learning Decision Trees for Unbalanced Data, European Conference on Machine Learning and Knowledge Discovery in Databases. 2008, Springer-Verlag, 241–256.
-
(2008)
, pp. 241-256
-
-
Cieslak, D.A.1
Chawla, N.V.2
-
34
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R.E., Singer, Y., Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37:3 (1999), 297–336.
-
(1999)
Mach. Learn.
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
35
-
-
0003463297
-
Adaptation in Natural and Artificial Systems
-
University of Michigan Press Ann Arbor, MI
-
Holland, J.H., Adaptation in Natural and Artificial Systems. 1975, University of Michigan Press, Ann Arbor, MI.
-
(1975)
-
-
Holland, J.H.1
-
36
-
-
84864116736
-
Negative correlation learning for class imbalance problems
-
Wang, S., Yao, X., Negative correlation learning for class imbalance problems. IEEE Trans. Neural Netw., 2011.
-
(2011)
IEEE Trans. Neural Netw.
-
-
Wang, S.1
Yao, X.2
-
37
-
-
85049428667
-
Benchmarking sampling techniques for imbalance learning in churn prediction Customer churn prediction
-
Zhu, B., Baesens, B., Backiel, A., et al., Benchmarking sampling techniques for imbalance learning in churn prediction Customer churn prediction. J. Oper. Res. Soc., 2017, 1–17.
-
(2017)
J. Oper. Res. Soc.
, pp. 1-17
-
-
Zhu, B.1
Baesens, B.2
Backiel, A.3
-
38
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista, G.E., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. Proceedings of ACM SIGKDD Explorations Newsletter, 6, 2004, 20–29.
-
(2004)
Proceedings of ACM SIGKDD Explorations Newsletter
, vol.6
, pp. 20-29
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
39
-
-
84921817000
-
A novel ensemble method for classifying imbalanced data
-
Sun, Z., Song, Q., Zhu, X., et al. A novel ensemble method for classifying imbalanced data. Pattern Recognit. 48:5 (2015), 1623–1637.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.5
, pp. 1623-1637
-
-
Sun, Z.1
Song, Q.2
Zhu, X.3
-
40
-
-
84926525100
-
Coupling different methods for overcoming the class imbalance problem
-
Nanni, L., Fantozzi, C., Lazzarini, N., Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158 (2015), 48–61.
-
(2015)
Neurocomputing
, vol.158
, pp. 48-61
-
-
Nanni, L.1
Fantozzi, C.2
Lazzarini, N.3
-
41
-
-
84953638515
-
Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data
-
Li, Y., Guo, H., Liu, X., et al. Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowl-Based Syst. 94 (2016), 88–104.
-
(2016)
Knowl-Based Syst.
, vol.94
, pp. 88-104
-
-
Li, Y.1
Guo, H.2
Liu, X.3
-
42
-
-
84971659662
-
Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data
-
Zhang, Z., Krawczyk, B., Garcìa, S., et al. Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl-Based Syst. 106 (2016), 251–263.
-
(2016)
Knowl-Based Syst.
, vol.106
, pp. 251-263
-
-
Zhang, Z.1
Krawczyk, B.2
Garcìa, S.3
-
43
-
-
84979464666
-
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
-
Sáez, J.A., Krawczyk, B., Woźniak, M., Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 57 (2016), 164–178.
-
(2016)
Pattern Recognit.
, vol.57
, pp. 164-178
-
-
Sáez, J.A.1
Krawczyk, B.2
Woźniak, M.3
-
44
-
-
79953050208
-
A dynamic over-sampling procedure based on sensitivity for multi-class problems
-
Fernández, N.F., Hervás, M.C., Antonio, G.P., A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit. 44:8 (2011), 1821–1833.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.8
, pp. 1821-1833
-
-
Fernández, N.F.1
Hervás, M.C.2
Antonio, G.P.3
-
45
-
-
85009476105
-
Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble
-
Sun, J., Fujita, H., Chen, P., et al. Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble. Knowl-Based Syst. 120 (2016), 4–14.
-
(2016)
Knowl-Based Syst.
, vol.120
, pp. 4-14
-
-
Sun, J.1
Fujita, H.2
Chen, P.3
-
46
-
-
85015734131
-
Posterior probability based ensemble strategy using optimizing decision directed acyclic graph for multi-class classification
-
Zhou, L., Fujita, H., Posterior probability based ensemble strategy using optimizing decision directed acyclic graph for multi-class classification. Inf. Sci. 400:401 (2017), 142–156.
-
(2017)
Inf. Sci.
, vol.400
, Issue.401
, pp. 142-156
-
-
Zhou, L.1
Fujita, H.2
-
47
-
-
85042332829
-
Imbalanced Enterprise Credit Evaluation with DTE-SBD: Decision Tree Ensemble Based on SMOTE and Bagging with Differentiated Sampling Rates
-
Sun, J., Lang, J., Fujita, H., et al., Imbalanced Enterprise Credit Evaluation with DTE-SBD: Decision Tree Ensemble Based on SMOTE and Bagging with Differentiated Sampling Rates. Inf. Sci. 425 (2018), 76–91.
-
(2018)
Inf. Sci.
, vol.425
, pp. 76-91
-
-
Sun, J.1
Lang, J.2
Fujita, H.3
-
48
-
-
84867715887
-
SMOTE-RSB, * : a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory
-
Ramentol, E., Caballero, Y., Bello, R., et al. SMOTE-RSB, * : a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl. Inf. Syst. 33:2 (2012), 245–265.
-
(2012)
Knowl. Inf. Syst.
, vol.33
, Issue.2
, pp. 245-265
-
-
Ramentol, E.1
Caballero, Y.2
Bello, R.3
-
49
-
-
84975252806
-
IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor classification
-
Ramentol, E., Vluymans, S., Verbiest, N., et al. IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor classification. IEEE Trans. Fuzzy Syst. 23:5 (2015), 1622–1637.
-
(2015)
IEEE Trans. Fuzzy Syst.
, vol.23
, Issue.5
, pp. 1622-1637
-
-
Ramentol, E.1
Vluymans, S.2
Verbiest, N.3
-
50
-
-
85042332829
-
Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates
-
Sun, Jie, Lang, Jie, Fujita, Hamido, Li, Hui, Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates. Inf. Sci. 425 (2018), 76–91.
-
(2018)
Inf. Sci.
, vol.425
, pp. 76-91
-
-
Sun, J.1
Lang, J.2
Fujita, H.3
Li, H.4
-
51
-
-
85009476105
-
Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble
-
Sun, Jie, Fujita, Hamido, Chen, Peng, Li, Hui, Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble. Knowl-Based Syst. 120 (2017), 4–14.
-
(2017)
Knowl-Based Syst.
, vol.120
, pp. 4-14
-
-
Sun, J.1
Fujita, H.2
Chen, P.3
Li, H.4
-
52
-
-
84945567357
-
Predicting the listing status of Chinese listed companies with multi-class classification models
-
Zhou, Ligang, Tam, KwoPing, Fujita, Hamido, Predicting the listing status of Chinese listed companies with multi-class classification models. Inf. Sci. 328 (2016), 222–236.
-
(2016)
Inf. Sci.
, vol.328
, pp. 222-236
-
-
Zhou, L.1
Tam, K.2
Fujita, H.3
-
53
-
-
85049483656
-
Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach
-
Vluymans, Sarah, Fernández, Alberto, Cornelis, YvanSaeysChris, Herrera, Francisco, Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach. Knowl. Inf. Syst. 1 (2018), 1–30.
-
(2018)
Knowl. Inf. Syst.
, vol.1
, pp. 1-30
-
-
Vluymans, S.1
Fernández, A.2
Cornelis, Y.3
Herrera, F.4
-
54
-
-
85017304883
-
An up-to-date comparison of state-of-the-art classification algorithms
-
Zhang, C., Liu, C., Zhang, X., et al. An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82 (2017), 128–150.
-
(2017)
Expert Syst. Appl.
, vol.82
, pp. 128-150
-
-
Zhang, C.1
Liu, C.2
Zhang, X.3
-
55
-
-
84861604521
-
Multiple comparisons using rank sums
-
Dunn, O.J., Multiple comparisons using rank sums. Technometrics 6:3 (1964), 241–252.
-
(1964)
Technometrics
, vol.6
, Issue.3
, pp. 241-252
-
-
Dunn, O.J.1
-
56
-
-
0004086493
-
Applied Nonparametric Statistics
-
(2nd ed.) Cengage Learning
-
Daniel, W.W., Applied Nonparametric Statistics. (2nd ed.), 2000, Cengage Learning.
-
(2000)
-
-
Daniel, W.W.1
|