-
1
-
-
84870621673
-
Chrysanthemum biotechnology: Quo vadis?
-
COI: 1:CAS:528:DC%2BC38XhvVSltrvJ
-
Teixeira da Silva, J. A. et al. Chrysanthemum biotechnology: Quo vadis? Crit. Rev. Plant Sci. 32, 21–52 (2013).
-
(2013)
Crit. Rev. Plant Sci.
, vol.32
, pp. 21-52
-
-
Teixeira da Silva, J.A.1
-
3
-
-
38149136541
-
Genome analysis and their phylogenetic relationships of several wild species of Dendranthema in China
-
Chen, F., Chen, P. & Li, H. Genome analysis and their phylogenetic relationships of several wild species of Dendranthema in China. Acta Hortic. Sin. 23, 67–72 (1996).
-
(1996)
Acta Hortic. Sin.
, vol.23
, pp. 67-72
-
-
Chen, F.1
Chen, P.2
Li, H.3
-
4
-
-
0040888707
-
Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum
-
Dai, S., Chen, J. & Li, W. Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum. Acta Bot. Sin. 40, 1053–1059 (1998).
-
(1998)
Acta Bot. Sin.
, vol.40
, pp. 1053-1059
-
-
Dai, S.1
Chen, J.2
Li, W.3
-
5
-
-
84868327461
-
Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences
-
COI: 1:CAS:528:DC%2BC38XhslWjsb%2FF, PID: 23133665
-
Liu, P., Wan, Q., Guo, Y., Yang, J. & Rao, G. Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS One 7, e48970 (2012).
-
(2012)
PLoS One
, vol.7
-
-
Liu, P.1
Wan, Q.2
Guo, Y.3
Yang, J.4
Rao, G.5
-
6
-
-
84966161130
-
The chromosomes of Chrysanthemum, II:garden varieties
-
Dowrick, G. J. The chromosomes of Chrysanthemum, II:garden varieties. Heredity 7, 59–72 (1953).
-
(1953)
Heredity
, vol.7
, pp. 59-72
-
-
Dowrick, G.J.1
-
7
-
-
0028837101
-
Meiosis and pollen fertility in Higo chrysanthemum (Dendranthema × grandiflorum (Ramat.) Kitam
-
Roxas, N. J., Tashiro, Y., Miyazaki, S., Isshiki, S. & Takeshita, A. Meiosis and pollen fertility in Higo chrysanthemum (Dendranthema × grandiflorum (Ramat.) Kitam. J. Jpn Soc. Hortic. Sci. 64, 161–168 (1995).
-
(1995)
J. Jpn Soc. Hortic. Sci.
, vol.64
, pp. 161-168
-
-
Roxas, N.J.1
Tashiro, Y.2
Miyazaki, S.3
Isshiki, S.4
Takeshita, A.5
-
8
-
-
85073188712
-
-
eds Van Huylenbroeck, J.) Ch.14 (Springer, Cham
-
Spaargaren, J. & van Geest, G. in Ornamental Crops, Vol. 11 (eds Van Huylenbroeck, J.) Ch.14 (Springer, Cham, 2018).
-
(2018)
Ornamental Crops
, vol.11
-
-
Spaargaren, J.1
van Geest, G.2
-
9
-
-
85014347834
-
A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in chrysanthemum
-
PID: 28082602
-
Chong, X. et al. A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in chrysanthemum. Genome Biol. Evol. 8, 3661–3671 (2016).
-
(2016)
Genome Biol. Evol.
, vol.8
, pp. 3661-3671
-
-
Chong, X.1
-
11
-
-
71549134913
-
Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat)
-
COI: 1:CAS:528:DC%2BD1MXhsFClu73O
-
Lin, L. & Harnly, J. M. Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem. 120, 319–326 (2010).
-
(2010)
Food Chem.
, vol.120
, pp. 319-326
-
-
Lin, L.1
Harnly, J.M.2
-
12
-
-
80053073214
-
Marker-assisted-selection (MAS): a fast track to increase genetic gain in horticultural crop breeding
-
Ibitoye, D. & Akin-Idowu, P. Marker-assisted-selection (MAS): a fast track to increase genetic gain in horticultural crop breeding. Afr. J. Biotechnol. 10, 11333–11339 (2011).
-
(2011)
Afr. J. Biotechnol.
, vol.10
, pp. 11333-11339
-
-
Ibitoye, D.1
Akin-Idowu, P.2
-
14
-
-
84979017207
-
Current status and biotechnological advances in genetic engineering of ornamental plants
-
PID: 27396521
-
Azadi, P., Bagheri, H., Nalousi, A. M., Nazari, F. & Chandler, S. F. Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol. Adv. 34, 1073–1090 (2016).
-
(2016)
Biotechnol. Adv.
, vol.34
, pp. 1073-1090
-
-
Azadi, P.1
Bagheri, H.2
Nalousi, A.M.3
Nazari, F.4
Chandler, S.F.5
-
15
-
-
85017922452
-
Biotechnological advancements for improving floral attributes in ornamental plants
-
PID: 28473834
-
Noman, A. et al. Biotechnological advancements for improving floral attributes in ornamental plants. Front. Plant Sci. 8, 530 (2017).
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 530
-
-
Noman, A.1
-
16
-
-
85021063939
-
Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking
-
PID: 28659941
-
Das, G., Patra, J. K. & Baek, K. H. Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front. Plant Sci. 8, 985 (2017).
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 985
-
-
Das, G.1
Patra, J.K.2
Baek, K.H.3
-
17
-
-
85021091032
-
Marker assisted selection: biotechnology tool for rice molecular breeding
-
Wijerathna, Y. Marker assisted selection: biotechnology tool for rice molecular breeding. Adv. Crop Sci. Technol. 3, 187 (2015).
-
(2015)
Adv. Crop Sci. Technol.
, vol.3
, pp. 187
-
-
Wijerathna, Y.1
-
18
-
-
85055724006
-
Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding
-
Choi, H. K. Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding. Genes Genom. 41, 133–146 (2019).
-
(2019)
Genes Genom.
, vol.41
, pp. 133-146
-
-
Choi, H.K.1
-
19
-
-
85073186935
-
-
eds Singh U. et al.) (Springer, New Delhi
-
Bohra, A., Jha, U. C., & Kumar, S. in Biofortification of Food Crops (eds Singh U. et al.) (Springer, New Delhi, 2016).
-
(2016)
Biofortification of Food Crops
-
-
Bohra, A.1
Jha, U.C.2
Kumar, S.3
-
20
-
-
85027056437
-
The emerging oilseed crop Sesamum indicum enters the “Omics” era
-
PID: 28713412
-
Dossa, K. et al. The emerging oilseed crop Sesamum indicum enters the “Omics” era. Front. Plant Sci. 8, 1154 (2017).
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 1154
-
-
Dossa, K.1
-
21
-
-
85073235827
-
-
Wani S. & Jain M, Springer, Cham
-
Bhat, J. A. et al. in Pulse Improvement (eds Wani S. & Jain M.) Ch. 2 (Springer, Cham, 2018).
-
(2018)
Pulse Improvement
, vol.2
-
-
Bhat, J.A.1
-
22
-
-
84920516293
-
Mammoth™ series garden chrysanthemum ‘Lavender Daisy’
-
Anderson, N. O. et al. Mammoth™ series garden chrysanthemum ‘Lavender Daisy’. HortScience 49, 1600–1604 (2014).
-
(2014)
HortScience
, vol.49
, pp. 1600-1604
-
-
Anderson, N.O.1
-
23
-
-
85010042734
-
Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum
-
COI: 1:CAS:528:DC%2BC2sXhsVejtr4%3D
-
Su, J. et al. Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica 213, 42 (2017).
-
(2017)
Euphytica
, vol.213
-
-
Su, J.1
-
24
-
-
85045909533
-
Cross breeding new cultivars of early-flowering multiflora chrysanthemum based on mathematical analysis
-
Zhang, M., Huang, H., Wang, Q. & Dai, S. Cross breeding new cultivars of early-flowering multiflora chrysanthemum based on mathematical analysis. HortScience 53, 421–426 (2018).
-
(2018)
HortScience
, vol.53
, pp. 421-426
-
-
Zhang, M.1
Huang, H.2
Wang, Q.3
Dai, S.4
-
25
-
-
85073188712
-
-
(eds Van Huylenbroeck, J.) Ch.11, Springer, Cham
-
Ibrahim, R., Ahmad, Z., Salleh, S., Hassan, A. A., & Ariffin, S. in Ornamental Crops, Vol. 11 (eds Van Huylenbroeck, J.) Ch.11 (Springer, Cham, 2018).
-
(2018)
Ornamental Crops
, vol.11
-
-
Ibrahim, R.1
Ahmad, Z.2
Salleh, S.3
Hassan, A.A.4
Ariffin, S.5
-
26
-
-
84939882482
-
Isolation of flower color and shape mutations by gamma radiation of Chrysanthemum morifolium Ramat cv. Youka
-
COI: 1:CAS:528:DC%2BC2cXovVGqs78%3D
-
Soliman, T. M. et al. Isolation of flower color and shape mutations by gamma radiation of Chrysanthemum morifolium Ramat cv. Youka. Euphytica 199, 317–324 (2014).
-
(2014)
Euphytica
, vol.199
, pp. 317-324
-
-
Soliman, T.M.1
-
27
-
-
84939893300
-
Tissue-dependent somaclonal mutation frequencies and spectra enhanced by ion beam irradiation in chrysanthemum
-
COI: 1:CAS:528:DC%2BC2cXht1Clu7fF
-
Okamura, M., Hase, Y., Furusawa, Y. & Tanaka, A. Tissue-dependent somaclonal mutation frequencies and spectra enhanced by ion beam irradiation in chrysanthemum. Euphytica 202, 333–343 (2015).
-
(2015)
Euphytica
, vol.202
, pp. 333-343
-
-
Okamura, M.1
Hase, Y.2
Furusawa, Y.3
Tanaka, A.4
-
28
-
-
85032493966
-
Microwave treatment can induce chrysanthemum phenotypic and genetic changes
-
COI: 1:CAS:528:DC%2BC2sXhs1WqsrzM
-
Miler, N. & Kulus, D. Microwave treatment can induce chrysanthemum phenotypic and genetic changes. Sci. Hortic. 227, 223–233 (2018).
-
(2018)
Sci. Hortic.
, vol.227
, pp. 223-233
-
-
Miler, N.1
Kulus, D.2
-
29
-
-
27944445623
-
Mutation breeding for crop improvement
-
Jain, H. K. & Kharkwal, M. C.) Ch. 26, (Springer, Dordrecht
-
Kharkwal, M. C., Pandey, R. N. & Pawar, S. E. Mutation breeding for crop improvement. in Plant Breeding, (eds Jain, H. K. & Kharkwal, M. C.) Ch. 26, 601–645 (Springer, Dordrecht, 2004).
-
(2004)
Plant Breeding
, pp. 601-645
-
-
Kharkwal, M.C.1
Pandey, R.N.2
Pawar, S.E.3
-
30
-
-
33751531370
-
Combined effect of gamma irradiation methods in vitro explant sources on mutation induction of flower colour in Chrysanthemum morifolium Ramat
-
Nagatomi, S., Miyahira, E., Degi, K. Combined effect of gamma irradiation methods in vitro explant sources on mutation induction of flower colour in Chrysanthemum morifolium Ramat. Gamma feild symposia (1997).
-
(1997)
Gamma Feild Symposia
-
-
Nagatomi, S.1
Miyahira, E.2
Degi, K.3
-
31
-
-
84865711157
-
Genetic modification; the development of transgenic ornamental plant varieties
-
PID: 22537268
-
Chandler, S. F. & Sanchez, C. Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotechnol. J. 10, 891–903 (2012).
-
(2012)
Plant Biotechnol. J.
, vol.10
, pp. 891-903
-
-
Chandler, S.F.1
Sanchez, C.2
-
32
-
-
78650774035
-
Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum
-
Yamaguchi, H. et al. Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed. Sci. 60, 398–404 (2010).
-
(2010)
Breed. Sci.
, vol.60
, pp. 398-404
-
-
Yamaguchi, H.1
-
33
-
-
85027285812
-
Advances in application of transgenic breeding technology in the traits improvement of chrysanthemum
-
COI: 1:CAS:528:DC%2BC2cXivV2hsrk%3D
-
Cheng, L., Wei, Q., Imtiaz, M., Gao, J. & Hong, B. Advances in application of transgenic breeding technology in the traits improvement of chrysanthemum. Acta Hortic. Sin. 40, 1813–1825 (2013).
-
(2013)
Acta Hortic. Sin.
, vol.40
, pp. 1813-1825
-
-
Cheng, L.1
Wei, Q.2
Imtiaz, M.3
Gao, J.4
Hong, B.5
-
34
-
-
85040797930
-
Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum
-
COI: 1:CAS:528:DC%2BC1cXhtFKhtL%2FI, PID: 29230937
-
Li, F. et al. Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnol. J. 16, 1311–1321 (2018).
-
(2018)
Plant Biotechnol. J.
, vol.16
, pp. 1311-1321
-
-
Li, F.1
-
35
-
-
84931572174
-
Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants
-
COI: 1:CAS:528:DC%2BC2MXmvVyqsLo%3D, PID: 25893877
-
Li, P. et al. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep. 34, 1365–1378 (2015).
-
(2015)
Plant Cell Rep.
, vol.34
, pp. 1365-1378
-
-
Li, P.1
-
36
-
-
85022000535
-
Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum
-
PID: 28684847, COI: 1:CAS:528:DC%2BC1cXhslejsr4%3D
-
Liang, Q. et al. Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum. Sci. Rep. 7, 4799 (2017).
-
(2017)
Sci. Rep.
, vol.7
-
-
Liang, Q.1
-
37
-
-
85034606774
-
Overexpression of DgWRKY4 enhances salt tolerance in chrysanthemum seedlings
-
PID: 28959270
-
Wang, K. et al. Overexpression of DgWRKY4 enhances salt tolerance in chrysanthemum seedlings. Front. Plant Sci. 8, 1592 (2017).
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 1592
-
-
Wang, K.1
-
38
-
-
85011841852
-
Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway
-
COI: 1:CAS:528:DC%2BC2sXmslClurg%3D, PID: 4881519
-
Jaffar, M. et al. Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway. Int. J. Mol. Sci. 17, 693 (2016).
-
(2016)
Int. J. Mol. Sci.
, vol.17
, pp. 693
-
-
Jaffar, M.1
-
39
-
-
84961157810
-
CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes
-
PID: 26938878, COI: 1:CAS:528:DC%2BC28Xhtl2jtbrF
-
Fan, Q. et al. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE 11, e0150572 (2016).
-
(2016)
PLoS ONE
, vol.11
-
-
Fan, Q.1
-
40
-
-
84961176310
-
CmWRKY15 facilitates Alternaria tenuissima infection of chrysanthemum
-
PID: 26600125, COI: 1:CAS:528:DC%2BC2MXitFSjsrbE
-
Fan, Q. et al. CmWRKY15 facilitates Alternaria tenuissima infection of chrysanthemum. PLoS ONE 10, e0143349 (2015).
-
(2015)
PLoS ONE
, vol.10
-
-
Fan, Q.1
-
41
-
-
84936933333
-
The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance
-
COI: 1:CAS:528:DC%2BC2MXhtFOks7zJ, PID: 26184088
-
Li, P. et al. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol. Biochem. 95, 26–34 (2015).
-
(2015)
Plant Physiol. Biochem.
, vol.95
, pp. 26-34
-
-
Li, P.1
-
42
-
-
85052917625
-
Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress
-
PID: 30180804, COI: 1:CAS:528:DC%2BC1MXjtVOhtrw%3D
-
Du, X. et al. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biol. 18, 178 (2018).
-
(2018)
BMC Plant Biol.
, vol.18
-
-
Du, X.1
-
43
-
-
85049375931
-
The over-expression of a chrysanthemum gene encoding an RNA polymerase II CTD phosphatase-like 1 enzyme enhances tolerance to heat stress
-
PID: 29977573, COI: 1:CAS:528:DC%2BC1cXhtlWqsbjO
-
Qi, Y. et al. The over-expression of a chrysanthemum gene encoding an RNA polymerase II CTD phosphatase-like 1 enzyme enhances tolerance to heat stress. Hortic. Res. 5, 37 (2018).
-
(2018)
Hortic. Res.
, vol.5
, pp. 37
-
-
Qi, Y.1
-
44
-
-
85043763664
-
Overexpression of Chrysanthemum lavandulifolium ClCBF1 in Chrysanthemum morifolium ‘White Snow’ improves the level of salinity and drought tolerance
-
COI: 1:CAS:528:DC%2BC1cXovVejsw%3D%3D, PID: 29331925
-
Gao, W. et al. Overexpression of Chrysanthemum lavandulifolium ClCBF1 in Chrysanthemum morifolium ‘White Snow’ improves the level of salinity and drought tolerance. Plant Physiol. Biochem. 124, 50–58 (2018).
-
(2018)
Plant Physiol. Biochem.
, vol.124
, pp. 50-58
-
-
Gao, W.1
-
45
-
-
85007306351
-
Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium
-
PID: 27872631
-
Huang, D. et al. Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front. Plant Sci. 7, 1633 (2016).
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 1633
-
-
Huang, D.1
-
46
-
-
85058616210
-
The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium
-
COI: 1:CAS:528:DC%2BC1cXisFOjsrfK, PID: 30824003
-
Wang, J. et al. The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Sci. 280, 248–257 (2019).
-
(2019)
Plant Sci.
, vol.280
, pp. 248-257
-
-
Wang, J.1
-
47
-
-
85054127096
-
The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum
-
PID: 30302256, COI: 1:CAS:528:DC%2BC1cXhvVCqsLvJ
-
Sun, C. et al. The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. Hortic. Res. 5, 52 (2018).
-
(2018)
Hortic. Res.
, vol.5
, pp. 52
-
-
Sun, C.1
-
48
-
-
85073265705
-
Isolation and functional analysis of the regulation of branching by isopentenyl transferase gene CmIPT1 in Chrysanthemum morifolium cv. ‘Jinba’
-
COI: 1:CAS:528:DC%2BC1MXhsVKmsbrI
-
Ishak, A., Dong, L., Rong, H., Zhang, S. & Zhao, L. Isolation and functional analysis of the regulation of branching by isopentenyl transferase gene CmIPT1 in Chrysanthemum morifolium cv. ‘Jinba’. Am. J. Mol. Biol. 8, 92 (2018).
-
(2018)
Am. J. Mol. Biol.
, vol.8
, pp. 92
-
-
Ishak, A.1
Dong, L.2
Rong, H.3
Zhang, S.4
Zhao, L.5
-
49
-
-
84940186883
-
Roles of DgD14 in regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum ‘Jinba’)
-
COI: 1:CAS:528:DC%2BC2MXhsVyjsLnP, PID: 26310142
-
Wen, C. et al. Roles of DgD14 in regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum ‘Jinba’). Plant Physiol. Biochem. 96, 241–253 (2015).
-
(2015)
Plant Physiol. Biochem.
, vol.96
, pp. 241-253
-
-
Wen, C.1
-
50
-
-
84958748654
-
Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching
-
COI: 1:CAS:528:DC%2BC28XisFyhu78%3D, PID: 26883225
-
Wen, C. et al. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Rep. 35, 1053–1070 (2016).
-
(2016)
Plant Cell Rep.
, vol.35
, pp. 1053-1070
-
-
Wen, C.1
-
51
-
-
85045856575
-
The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance
-
COI: 1:CAS:528:DC%2BC1cXotF2nsro%3D, PID: 29687169
-
Nie, J. et al. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep. 37, 1049–1060 (2018).
-
(2018)
Plant Cell Rep.
, vol.37
, pp. 1049-1060
-
-
Nie, J.1
-
52
-
-
84903585981
-
A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis
-
COI: 1:CAS:528:DC%2BC2cXhtFOhtr3J, PID: 24858937
-
Yang, Y. et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell 26, 2038–2054 (2014).
-
(2014)
Plant Cell
, vol.26
, pp. 2038-2054
-
-
Yang, Y.1
-
53
-
-
85031016269
-
Control of chrysanthemum flowering through integration with an aging pathway
-
PID: 29018260, COI: 1:CAS:528:DC%2BC1cXovFyntLw%3D
-
Wei, Q. et al. Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8, 829 (2017).
-
(2017)
Nat. Commun.
, vol.8
-
-
Wei, Q.1
-
54
-
-
85056748214
-
The constitutive expression of a chrysanthemum ERF transcription factor influences flowering time in Arabidopsis thaliana
-
COI: 1:CAS:528:DC%2BC1cXit1eiurrO, PID: 30448907
-
Xing, X. et al. The constitutive expression of a chrysanthemum ERF transcription factor influences flowering time in Arabidopsis thaliana. Mol. Biotechnol. 61, 20–31 (2019).
-
(2019)
Mol. Biotechnol.
, vol.61
, pp. 20-31
-
-
Xing, X.1
-
55
-
-
85061579916
-
Characterization of TEMINAL FLOWER1 homologs CmTFL1c gene from Chrysanthemum morifolium
-
COI: 1:CAS:528:DC%2BC1MXmtlaisr4%3D
-
Gao, Y. et al. Characterization of TEMINAL FLOWER1 homologs CmTFL1c gene from Chrysanthemum morifolium. Plant Mol. Biol. 99, 1–15 (2019).
-
(2019)
Plant Mol. Biol.
, vol.99
, pp. 1-15
-
-
Gao, Y.1
-
56
-
-
84929168451
-
CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum
-
COI: 1:CAS:528:DC%2BC2MXnslOjt7Y%3D, PID: 26089146
-
Higuchi, Y. & Hisamatsu, T. CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum. Plant Sci. 237, 1–7 (2015).
-
(2015)
Plant Sci.
, vol.237
, pp. 1-7
-
-
Higuchi, Y.1
Hisamatsu, T.2
-
57
-
-
84997542765
-
Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium
-
PID: 27917290, COI: 1:CAS:528:DC%2BC1cXltl2qtLY%3D
-
Mao, Y. et al. Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium. Hortic. Res. 3, 16058 (2016).
-
(2016)
Hortic. Res.
, vol.3
, pp. 16058
-
-
Mao, Y.1
-
58
-
-
84924872507
-
Dual silencing of DmCPD and DmGA20ox genes generates a novel miniature and delayed-flowering Dendranthema morifolium variety
-
COI: 1:CAS:528:DC%2BC2MXis1agt7g%3D
-
Xie, Q., Chen, G., Liu, Q., Zhu, Z. & Hu, Z. Dual silencing of DmCPD and DmGA20ox genes generates a novel miniature and delayed-flowering Dendranthema morifolium variety. Mol. Breed. 35, 67 (2015).
-
(2015)
Mol. Breed.
, vol.35
, pp. 67
-
-
Xie, Q.1
Chen, G.2
Liu, Q.3
Zhu, Z.4
Hu, Z.5
-
59
-
-
85060015906
-
Effects of the silencing of CmMET1 by RNA interference in chrysanthemum (Chrysanthemum morifolium)
-
Li, S. et al. Effects of the silencing of CmMET1 by RNA interference in chrysanthemum (Chrysanthemum morifolium). Plant Biotechnol. Rep. 13, 63–72 (2019).
-
(2019)
Plant Biotechnol. Rep.
, vol.13
, pp. 63-72
-
-
Li, S.1
-
60
-
-
33745685921
-
Cloning, functional identification and sequence analysis of flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase cDNAs reveals independent evolution of flavonoid 3′,5′-hydroxylase in the Asteraceae family
-
COI: 1:CAS:528:DC%2BD28Xms1Oiurs%3D, PID: 16830174
-
Seitz, C. et al. Cloning, functional identification and sequence analysis of flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase cDNAs reveals independent evolution of flavonoid 3′,5′-hydroxylase in the Asteraceae family. Plant Mol. Biol. 61, 365–381 (2006).
-
(2006)
Plant Mol. Biol.
, vol.61
, pp. 365-381
-
-
Seitz, C.1
-
61
-
-
84885944701
-
Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins
-
COI: 1:CAS:528:DC%2BC3sXhs1SmtbfO, PID: 23926063
-
Noda, N. et al. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant Cell Physiol. 54, 1684–1695 (2013).
-
(2013)
Plant Cell Physiol.
, vol.54
, pp. 1684-1695
-
-
Noda, N.1
-
62
-
-
84885911557
-
Violet/blue chrysanthemums—metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors
-
COI: 1:CAS:528:DC%2BC3sXhs1Smur7M, PID: 23926066
-
Brugliera, F. et al. Violet/blue chrysanthemums—metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol. 54, 1696–1710 (2013).
-
(2013)
Plant Cell Physiol.
, vol.54
, pp. 1696-1710
-
-
Brugliera, F.1
-
63
-
-
85027835716
-
Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism
-
PID: 28782017, COI: 1:CAS:528:DC%2BC1cXntFGktLk%3D
-
Noda, N. et al. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci. Adv. 3, e1602785 (2017).
-
(2017)
Sci. Adv.
, vol.3
-
-
Noda, N.1
-
64
-
-
85009143841
-
CRISPR/Cas9 platforms for genome editing in plants: developments and applications
-
COI: 1:CAS:528:DC%2BC28XnslGltrk%3D, PID: 27108381
-
Ma, X., Zhu, Q., Chen, Y. & Liu, Y. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol. Plant 9, 961–974 (2016).
-
(2016)
Mol. Plant
, vol.9
, pp. 961-974
-
-
Ma, X.1
Zhu, Q.2
Chen, Y.3
Liu, Y.4
-
65
-
-
85028588143
-
CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil
-
PID: 28855641, COI: 1:CAS:528:DC%2BC1MXkt12nug%3D%3D
-
Watanabe, K. et al. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Sci. Rep. 7, 10028 (2017).
-
(2017)
Sci. Rep.
, vol.7
-
-
Watanabe, K.1
-
66
-
-
85038123508
-
Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4
-
COI: 1:CAS:528:DC%2BC2sXhvFyrsrjJ, PID: 29247330
-
Watanabe, K., Oda-Yamamizo, C., Sage-Ono, K., Ohmiya, A. & Ono, M. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Res. 27, 25–38 (2018).
-
(2018)
Transgenic Res.
, vol.27
, pp. 25-38
-
-
Watanabe, K.1
Oda-Yamamizo, C.2
Sage-Ono, K.3
Ohmiya, A.4
Ono, M.5
-
67
-
-
85046167323
-
Genome engineering in ornamental plants: current status and future prospects
-
COI: 1:CAS:528:DC%2BC1cXos1Krsr8%3D, PID: 29709514
-
Kishi-Kaboshi, M., Aida, R. & Sasaki, K. Genome engineering in ornamental plants: current status and future prospects. Plant Physiol. Biochem. 131, 47–52 (2018).
-
(2018)
Plant Physiol. Biochem.
, vol.131
, pp. 47-52
-
-
Kishi-Kaboshi, M.1
Aida, R.2
Sasaki, K.3
-
68
-
-
85019852737
-
Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers
-
COI: 1:CAS:528:DC%2BC1cXhsFWms7%2FO, PID: 28049122
-
Kishi-Kaboshi, M., Aida, R. & Sasaki, K. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol. 58, 216–226 (2017).
-
(2017)
Plant Cell Physiol.
, vol.58
, pp. 216-226
-
-
Kishi-Kaboshi, M.1
Aida, R.2
Sasaki, K.3
-
69
-
-
85015439626
-
DNA-informed breeding of rosaceous crops: promises, progress and prospects
-
PID: 28326185
-
Peace, C. P. DNA-informed breeding of rosaceous crops: promises, progress and prospects. Hortic. Res. 4, 17006 (2017).
-
(2017)
Hortic. Res.
, vol.4
, pp. 17006
-
-
Peace, C.P.1
-
70
-
-
0033804169
-
Molecular heterosis: a review
-
COI: 1:CAS:528:DC%2BD3cXms1yjsLw%3D, PID: 11001792
-
Comings, D. E. & MacMurray, J. P. Molecular heterosis: a review. Mol. Genet. Metab. 71, 19–31 (2000).
-
(2000)
Mol. Genet. Metab.
, vol.71
, pp. 19-31
-
-
Comings, D.E.1
MacMurray, J.P.2
-
71
-
-
0031428566
-
Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications
-
Maliepaard, C., Jansen, J. & Van Ooijen, J. Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet. Res. 70, 237–250 (1997).
-
(1997)
Genet. Res.
, vol.70
, pp. 237-250
-
-
Maliepaard, C.1
Jansen, J.2
Van Ooijen, J.3
-
72
-
-
0028837101
-
Meiosis and pollen fertility in Higo chrysanthemum (Dendranthema× grandiflorum (Ramat.) Kitam
-
Roxas, N. J., Tashiro, Y., Miyazaki, S., Isshiki, S. & Takeshita, A. Meiosis and pollen fertility in Higo chrysanthemum (Dendranthema× grandiflorum (Ramat.) Kitam. J. Jpn Soc. Hortic. Sci. 64, 161–168 (1995).
-
(1995)
J. Jpn Soc. Hortic. Sci.
, vol.64
, pp. 161-168
-
-
Roxas, N.J.1
Tashiro, Y.2
Miyazaki, S.3
Isshiki, S.4
Takeshita, A.5
-
73
-
-
84937555748
-
Cytomorphological studies in some species of Chrysanthemum L. (Asteraceae)
-
Gupta, R. C., Bala, S., Sharma, S. & Kapoor, M. Cytomorphological studies in some species of Chrysanthemum L. (Asteraceae). Chromosome Bot. 8, 69–74 (2013).
-
(2013)
Chromosome Bot.
, vol.8
, pp. 69-74
-
-
Gupta, R.C.1
Bala, S.2
Sharma, S.3
Kapoor, M.4
-
74
-
-
77953135799
-
A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers
-
COI: 1:CAS:528:DC%2BC3cXntVGjurc%3D
-
Zhang, F., Chen, S., Chen, F., Fang, W. & Li, F. A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci. Hortic. 125, 422–428 (2010).
-
(2010)
Sci. Hortic.
, vol.125
, pp. 422-428
-
-
Zhang, F.1
Chen, S.2
Chen, F.3
Fang, W.4
Li, F.5
-
75
-
-
78650723941
-
SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium)
-
COI: 1:CAS:528:DC%2BC3MXosVKqsLs%3D
-
Zhang, F. et al. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol. Breed. 27, 11–23 (2011).
-
(2011)
Mol. Breed.
, vol.27
, pp. 11-23
-
-
Zhang, F.1
-
76
-
-
84865439179
-
Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum
-
Zhang, F., Jiang, J., Chen, S., Chen, F. & Fang, W. Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Mol. Breed. 30, 1027–1036 (2012).
-
(2012)
Mol. Breed.
, vol.30
, pp. 1027-1036
-
-
Zhang, F.1
Jiang, J.2
Chen, S.3
Chen, F.4
Fang, W.5
-
77
-
-
84870495305
-
Detection of quantitative trait loci for leaf traits in chrysanthemum
-
Zhang, F., Jiang, J., Chen, S., Chen, F. & Fang, W. Detection of quantitative trait loci for leaf traits in chrysanthemum. J. Hortic. Sci. Biotechnol. 87, 613–618 (2012).
-
(2012)
J. Hortic. Sci. Biotechnol.
, vol.87
, pp. 613-618
-
-
Zhang, F.1
Jiang, J.2
Chen, S.3
Chen, F.4
Fang, W.5
-
78
-
-
78649731257
-
Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium)
-
COI: 1:CAS:528:DC%2BC3cXhsVyhtr3N
-
Zhang, F. et al. Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 177, 15–24 (2011).
-
(2011)
Euphytica
, vol.177
, pp. 15-24
-
-
Zhang, F.1
-
79
-
-
84892412076
-
Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum (Chrysanthemum morifolium)
-
PID: 24349424, COI: 1:CAS:528:DC%2BC2cXisFGgtr0%3D
-
Zhang, F. et al. Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum (Chrysanthemum morifolium). PLoS ONE 8, e83023 (2013).
-
(2013)
PLoS ONE
, vol.8
-
-
Zhang, F.1
-
80
-
-
84909633030
-
Inheritance and molecular markers for aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.)
-
COI: 1:CAS:528:DC%2BC2cXhvVGit77K
-
Wang, C. et al. Inheritance and molecular markers for aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Sci. Hortic. 180, 220–226 (2014).
-
(2014)
Sci. Hortic.
, vol.180
, pp. 220-226
-
-
Wang, C.1
-
81
-
-
84925497799
-
Identification of quantitative trait loci for branching traits of spray cut chrysanthemum
-
COI: 1:CAS:528:DC%2BC2cXhsFynsrrM
-
Peng, H. et al. Identification of quantitative trait loci for branching traits of spray cut chrysanthemum. Euphytica 202, 385–392 (2015).
-
(2015)
Euphytica
, vol.202
, pp. 385-392
-
-
Peng, H.1
-
83
-
-
85038827341
-
Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum
-
COI: 1:CAS:528:DC%2BC2sXitVanu7nN, PID: 29273861
-
Su, J. et al. Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum. Planta 247, 899–924 (2018).
-
(2018)
Planta
, vol.247
, pp. 899-924
-
-
Su, J.1
-
84
-
-
85045115946
-
Recent progress in whole genome sequencing, high-density linkage maps, and genomic databases of ornamental plants
-
Yagi, M. Recent progress in whole genome sequencing, high-density linkage maps, and genomic databases of ornamental plants. Breed. Sci. 68, 17080 (2018).
-
(2018)
Breed. Sci.
, vol.68
, pp. 17080
-
-
Yagi, M.1
-
85
-
-
85059309407
-
Construction of a high-density genetic linkage map and QTL mapping of oleic acid content and three agronomic traits in sunflower (Helianthus annuus L.) using specific-locus amplified fragment sequencing (SLAF-seq)
-
Zhou, F. et al. Construction of a high-density genetic linkage map and QTL mapping of oleic acid content and three agronomic traits in sunflower (Helianthus annuus L.) using specific-locus amplified fragment sequencing (SLAF-seq). Breed. Sci. 68, 18051 (2018).
-
(2018)
Breed. Sci.
, vol.68
, pp. 18051
-
-
Zhou, F.1
-
86
-
-
85045477481
-
High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese endemic Dendrobium (Orchidaceae)
-
PID: 29636767
-
Lu, J. et al. High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese endemic Dendrobium (Orchidaceae). Front. Plant Sci. 9, 398 (2018).
-
(2018)
Front. Plant Sci.
, vol.9
, pp. 398
-
-
Lu, J.1
-
87
-
-
84922252412
-
Filling gaps with construction of a genetic linkage map in tetraploid roses
-
PID: 25628638
-
Yu, C. et al. Filling gaps with construction of a genetic linkage map in tetraploid roses. Front. Plant Sci. 5, 796 (2015).
-
(2015)
Front. Plant Sci.
, vol.5
, pp. 796
-
-
Yu, C.1
-
88
-
-
84992580536
-
High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array
-
PID: 27818777, COI: 1:CAS:528:DC%2BC1cXkslOntLw%3D
-
Vukosavljev, M. et al. High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array. Hortic. Res. 3, 16052 (2016).
-
(2016)
Hortic. Res.
, vol.3
, pp. 16052
-
-
Vukosavljev, M.1
-
89
-
-
84866946925
-
The mode of inheritance in tetraploid cut roses
-
COI: 1:STN:280:DC%2BC38rnsVyhsw%3D%3D, PID: 22526522
-
Koning-Boucoiran, C. F. S. et al. The mode of inheritance in tetraploid cut roses. Theor. Appl. Genet. 125, 591–607 (2012).
-
(2012)
Theor. Appl. Genet.
, vol.125
, pp. 591-607
-
-
Koning-Boucoiran, C.F.S.1
-
90
-
-
85016480907
-
Partial preferential chromosome pairing is genotype dependent in tetraploid rose
-
COI: 1:CAS:528:DC%2BC2sXksV2kt7o%3D, PID: 28142191
-
Bourke, P. M. et al. Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant J. 90, 330–343 (2017).
-
(2017)
Plant J.
, vol.90
, pp. 330-343
-
-
Bourke, P.M.1
-
91
-
-
85027110577
-
Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array
-
COI: 1:CAS:528:DC%2BC1cXitFars7bN
-
van Geest, G. et al. Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array. BMC Genom. 18, 585 (2017).
-
(2017)
BMC Genom.
, vol.18
-
-
van Geest, G.1
-
92
-
-
85028746306
-
An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis
-
PID: 28852802, COI: 1:CAS:528:DC%2BC2sXhsVWhur3J
-
van Geest, G. et al. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor. Appl. Genet. 130, 2527–2541 (2017).
-
(2017)
Theor. Appl. Genet.
, vol.130
, pp. 2527-2541
-
-
van Geest, G.1
-
93
-
-
0034931677
-
Dwarf8 polymorphisms associate with variation in flowering time
-
COI: 1:CAS:528:DC%2BD3MXltFSmurc%3D, PID: 11431702
-
Thornsberry, J. M. et al. Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28, 286 (2001).
-
(2001)
Nat. Genet.
, vol.28
, pp. 286
-
-
Thornsberry, J.M.1
-
94
-
-
85076341868
-
-
(eds Wani, S. H.) Ch. 9, Academic Press
-
Challa, S., & Neelapu, N. R. in Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants (eds Wani, S. H.) Ch. 9 (Academic Press, 2018).
-
(2018)
Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants
-
-
Challa, S.1
Neelapu, N.R.2
-
95
-
-
84954422513
-
Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.)
-
COI: 1:CAS:528:DC%2BC28XoslSqtw%3D%3D
-
Li, P. et al. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol. Genet. Genom. 291, 1117–1125 (2016).
-
(2016)
Mol. Genet. Genom.
, vol.291
, pp. 1117-1125
-
-
Li, P.1
-
96
-
-
84982126126
-
Genetic variation and association mapping of waterlogging tolerance in chrysanthemum
-
COI: 1:CAS:528:DC%2BC28XhtlCitb%2FL, PID: 27522648
-
Su, J. et al. Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta 244, 1241–1252 (2016).
-
(2016)
Planta
, vol.244
, pp. 1241-1252
-
-
Su, J.1
-
97
-
-
85040451966
-
Genetic variation and association mapping of aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.)
-
Fu, X. et al. Genetic variation and association mapping of aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Euphytica 214, 21 (2018).
-
(2018)
Euphytica
, vol.214
-
-
Fu, X.1
-
98
-
-
85045986223
-
Association analysis of drought tolerance in cut chrysanthemum (Chrysanthemum morifolium Ramat.) at seedling stage
-
Li, P. et al. Association analysis of drought tolerance in cut chrysanthemum (Chrysanthemum morifolium Ramat.) at seedling stage. 3 Biotech 8, 1–9 (2018).
-
(2018)
3 Biotech
, vol.8
, pp. 1-9
-
-
Li, P.1
-
99
-
-
85060995083
-
Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums
-
PID: 30729011, COI: 1:CAS:528:DC%2BC1MXhtFWqtrrJ
-
Su, J. et al. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. Hortic. Res. 6, 21 (2019).
-
(2019)
Hortic. Res.
, vol.6
, pp. 21
-
-
Su, J.1
-
100
-
-
85062821406
-
Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum
-
COI: 1:CAS:528:DC%2BC1MXmtFKju7s%3D, PID: 30701353
-
Chong, X. et al. Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum. Plant Mol. Biol. 99, 407–420 (2019).
-
(2019)
Plant Mol. Biol.
, vol.99
, pp. 407-420
-
-
Chong, X.1
-
101
-
-
84982980830
-
Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum
-
COI: 1:CAS:528:DC%2BC28Xps12guw%3D%3D
-
Klie, M., Menz, I., Linde, M. & Debener, T. Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Mol. Genet. Genom. 291, 957–969 (2016).
-
(2016)
Mol. Genet. Genom.
, vol.291
, pp. 957-969
-
-
Klie, M.1
Menz, I.2
Linde, M.3
Debener, T.4
-
102
-
-
84981200536
-
Genome-wide discovery of DNA polymorphisms in mei (Prunus mume Sieb. et Zucc.), an ornamental woody plant, with contrasting tree architecture and their functional relevance for weeping trait
-
COI: 1:CAS:528:DC%2BC28XhtlCrtrvF, PID: 28239231
-
Zhang, J. et al. Genome-wide discovery of DNA polymorphisms in mei (Prunus mume Sieb. et Zucc.), an ornamental woody plant, with contrasting tree architecture and their functional relevance for weeping trait. Plant Mol. Biol. Report. 35, 37–46 (2017).
-
(2017)
Plant Mol. Biol. Report.
, vol.35
, pp. 37-46
-
-
Zhang, J.1
-
103
-
-
85048322737
-
A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits
-
COI: 1:CAS:528:DC%2BC1cXhtFGgsb3L, PID: 29892093
-
Hibrand Saint-Oyant, L. et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 4, 473–484 (2018).
-
(2018)
Nat. Plants
, vol.4
, pp. 473-484
-
-
Hibrand Saint-Oyant, L.1
-
104
-
-
84931957575
-
Genotyping-in-Thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing
-
COI: 1:CAS:528:DC%2BC2MXhtVGnu7zF, PID: 25476721
-
Campbell, N. R., Harmon, S. A. & Narum, S. R. Genotyping-in-Thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol. Ecol. Resour. 15, 855–867 (2015).
-
(2015)
Mol. Ecol. Resour.
, vol.15
, pp. 855-867
-
-
Campbell, N.R.1
Harmon, S.A.2
Narum, S.R.3
-
105
-
-
84990857915
-
QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods
-
COI: 1:CAS:528:DC%2BC28Xhs1GqsL%2FI, PID: 27714417
-
Win, K. T., Vegas, J., Zhang, C., Song, K. & Lee, S. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor. Appl. Genet. 130, 199–211 (2017).
-
(2017)
Theor. Appl. Genet.
, vol.130
, pp. 199-211
-
-
Win, K.T.1
Vegas, J.2
Zhang, C.3
Song, K.4
Lee, S.5
-
107
-
-
85073188712
-
-
eds Van Huylenbroeck, J.) Ch.9 (Springer, Cham
-
Smulders, M. J., & Arens, P. in Ornamental Crops, Vol. 11 (eds Van Huylenbroeck, J.) Ch.9 (Springer, Cham, 2018).
-
(2018)
Ornamental Crops
, vol.11
-
-
Smulders, M.J.1
Arens, P.2
-
108
-
-
84860623957
-
Gene mapping via bulked segregant RNA-Seq (BSR-Seq)
-
COI: 1:CAS:528:DC%2BC38Xns1ajuro%3D, PID: 22586469
-
Liu, S., Yeh, C. T., Tang, H. M., Nettleton, D. & Schnable, P. S. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7, e36406 (2012).
-
(2012)
PLoS ONE
, vol.7
-
-
Liu, S.1
Yeh, C.T.2
Tang, H.M.3
Nettleton, D.4
Schnable, P.S.5
-
109
-
-
85043312689
-
Development of molecular markers linked to powdery mildew resistance gene Pm4b by combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat
-
PID: 29491869
-
Wu, P. et al. Development of molecular markers linked to powdery mildew resistance gene Pm4b by combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat. Front. Plant Sci. 9, 95 (2018).
-
(2018)
Front. Plant Sci.
, vol.9
, pp. 95
-
-
Wu, P.1
-
110
-
-
85045766855
-
Mapping a leaf senescence gene els1 by BSR-Seq in common wheat
-
Li, M. et al. Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J. 6, 236–243 (2018).
-
(2018)
Crop J.
, vol.6
, pp. 236-243
-
-
Li, M.1
-
111
-
-
85044303271
-
Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR
-
COI: 1:CAS:528:DC%2BC1cXhs12gtLvK
-
Hou, X. et al. Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR. Molecules 23, 689 (2018).
-
(2018)
Molecules
, vol.23
, pp. 689
-
-
Hou, X.1
-
113
-
-
77958197567
-
Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.)
-
COI: 1:CAS:528:DC%2BC3cXhtFOnsrjK
-
Perumalsamy, S. et al. Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed. 129, 400–406 (2010).
-
(2010)
Plant Breed.
, vol.129
, pp. 400-406
-
-
Perumalsamy, S.1
-
114
-
-
42449139080
-
Marker-assisted selection in plant breeding: from publications to practice
-
Xu, Y. & Crouch, J. H. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 48, 391–407 (2008).
-
(2008)
Crop Sci.
, vol.48
, pp. 391-407
-
-
Xu, Y.1
Crouch, J.H.2
-
115
-
-
84905667070
-
Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads
-
COI: 1:CAS:528:DC%2BC2cXhtlejt7%2FM, PID: 24755901
-
Kajitani, R. et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 24, 1384–1395 (2014).
-
(2014)
Genome Res.
, vol.24
, pp. 1384-1395
-
-
Kajitani, R.1
-
116
-
-
85046780928
-
Transcriptome profiling using Illumina-and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection
-
COI: 1:CAS:528:DC%2BC1cXptl2ksbk%3D, PID: 29730427
-
Zhu, C., Li, X. & Zheng, J. Transcriptome profiling using Illumina-and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Gene 666, 123–133 (2018).
-
(2018)
Gene
, vol.666
, pp. 123-133
-
-
Zhu, C.1
Li, X.2
Zheng, J.3
-
117
-
-
84955328077
-
1 progeny
-
COI: 1:CAS:528:DC%2BC28Xht1ert74%3D, PID: 26786968
-
1 progeny. Sci. Rep. 6, 19427 (2016).
-
(2016)
Sci. Rep.
, vol.6
-
-
Scaglione, D.1
-
118
-
-
85020219786
-
The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution
-
COI: 1:CAS:528:DC%2BC2sXosVagtL4%3D, PID: 28538728
-
Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148 (2017).
-
(2017)
Nature
, vol.546
, pp. 148
-
-
Badouin, H.1
-
119
-
-
85017430250
-
Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce
-
COI: 1:CAS:528:DC%2BC2sXmtFCrsLk%3D, PID: 28401891
-
Reyes-Chin-Wo, S. et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun. 8, 14953 (2017).
-
(2017)
Nat. Commun.
, vol.8
-
-
Reyes-Chin-Wo, S.1
-
120
-
-
85045897546
-
The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis
-
COI: 1:CAS:528:DC%2BC1cXotlGjsbk%3D, PID: 29703587
-
Shen, Q. et al. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Mol. Plant 11, 776–788 (2018).
-
(2018)
Mol. Plant
, vol.11
, pp. 776-788
-
-
Shen, Q.1
-
121
-
-
85057117212
-
The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits
-
COI: 1:CAS:528:DC%2BC1cXit1ehs7%2FI, PID: 30342096
-
Song, C. et al. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Mol. Plant 11, 1482–1491 (2018).
-
(2018)
Mol. Plant
, vol.11
, pp. 1482-1491
-
-
Song, C.1
-
122
-
-
85068425004
-
De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis
-
PID: 30689773
-
Hirakawa, H. et al. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res. 26, 195–203 (2019).
-
(2019)
DNA Research
, vol.26
, Issue.3
, pp. 195-203
-
-
Hirakawa, H.1
Sumitomo, K.2
Hisamatsu, T.3
Nagano, S.4
Shirasawa, K.5
Higuchi, Y.6
Kusaba, M.7
Koshioka, M.8
Nakano, Y.9
Yagi, M.10
Yamaguchi, H.11
Taniguchi, K.12
Nakano, M.13
Isobe, S.N.14
-
123
-
-
57749195712
-
RNA-Seq: a revolutionary tool for transcriptomics
-
COI: 1:CAS:528:DC%2BD1cXhsFWis7bL, PID: 19015660
-
Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57 (2009).
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 57
-
-
Wang, Z.1
Gerstein, M.2
Snyder, M.3
-
124
-
-
77950420409
-
Seasonal and developmental timing of flowering
-
COI: 1:CAS:528:DC%2BC3cXkvFKnt7k%3D, PID: 20409274
-
Amasino, R. Seasonal and developmental timing of flowering. Plant J. 61, 1001–1013 (2010).
-
(2010)
Plant J.
, vol.61
, pp. 1001-1013
-
-
Amasino, R.1
-
125
-
-
84894277603
-
Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: analysis of gene expression patterns in floral bud emergence
-
COI: 1:CAS:528:DC%2BC3sXhvValsr%2FO
-
Wang, Y. et al. Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: analysis of gene expression patterns in floral bud emergence. Plant Cell Tiss. Organ 116, 297–309 (2014).
-
(2014)
Plant Cell Tiss. Organ
, vol.116
, pp. 297-309
-
-
Wang, Y.1
-
126
-
-
84930201838
-
Whole-transcriptome analysis of differentially expressed genes in the vegetative buds, floral buds and buds of Chrysanthemum morifolium
-
PID: 26009891, COI: 1:CAS:528:DC%2BC2MXhslWqtbzK
-
Liu, H. et al. Whole-transcriptome analysis of differentially expressed genes in the vegetative buds, floral buds and buds of Chrysanthemum morifolium. PLoS ONE 10, e0128009 (2015).
-
(2015)
PLoS ONE
, vol.10
-
-
Liu, H.1
-
127
-
-
85009911279
-
Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium ‘Jinba’
-
COI: 1:CAS:528:DC%2BC2sXhsVejurs%3D, PID: 28108965
-
Wang, J. et al. Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium ‘Jinba’. Plant Mol. Biol. 93, 593–606 (2017).
-
(2017)
Plant Mol. Biol.
, vol.93
, pp. 593-606
-
-
Wang, J.1
-
128
-
-
84884617893
-
Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress
-
COI: 1:CAS:528:DC%2BC3sXhvVOnt7vL
-
Xu, Y. et al. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genom. 14, 662 (2013).
-
(2013)
BMC Genom.
, vol.14
-
-
Xu, Y.1
-
129
-
-
85049321659
-
The chrysanthemum leaf and root transcript profiling in response to salinity stress
-
COI: 1:CAS:528:DC%2BC1cXht1Cntb3N, PID: 29944951
-
Cheng, P. et al. The chrysanthemum leaf and root transcript profiling in response to salinity stress. Gene 674, 161–169 (2018).
-
(2018)
Gene
, vol.674
, pp. 161-169
-
-
Cheng, P.1
-
130
-
-
85046288705
-
Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress
-
COI: 1:CAS:528:DC%2BC1cXitl2nt7vK
-
Wang, K. et al. Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genom. 19, 319 (2018).
-
(2018)
BMC Genom.
, vol.19
-
-
Wang, K.1
-
131
-
-
84907990508
-
Identification of differentially expressed genes in Chrysanthemum nankingense (Asteraceae) under heat stress by RNA Seq
-
COI: 1:CAS:528:DC%2BC2cXhsV2mtLbM, PID: 25200493
-
Sun, J. et al. Identification of differentially expressed genes in Chrysanthemum nankingense (Asteraceae) under heat stress by RNA Seq. Gene 552, 59–66 (2014).
-
(2014)
Gene
, vol.552
, pp. 59-66
-
-
Sun, J.1
-
132
-
-
85047065273
-
Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions
-
COI: 1:CAS:528:DC%2BC1cXisVOqsLbP
-
Zhao, N. et al. Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions. Int. J. Mol. Sci. 19, 1455 (2018).
-
(2018)
Int. J. Mol. Sci.
, vol.19
, pp. 1455
-
-
Zhao, N.1
-
133
-
-
84865423928
-
MicroRNAs and their diverse functions in plants
-
COI: 1:CAS:528:DC%2BC38XhtF2rs7vN, PID: 21874378
-
Sun, G. MicroRNAs and their diverse functions in plants. Plant Mol. Biol. 80, 17–36 (2012).
-
(2012)
Plant Mol. Biol.
, vol.80
, pp. 17-36
-
-
Sun, G.1
-
134
-
-
84956644825
-
MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium)
-
PID: 26650759, COI: 1:CAS:528:DC%2BC28XlsFegtQ%3D%3D
-
Xia, X. et al. MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium). PLoS ONE 10, e0143720 (2015).
-
(2015)
PLoS ONE
, vol.10
-
-
Xia, X.1
-
135
-
-
84891497922
-
RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima
-
Li, H. et al. RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genom. 15, 9 (2014).
-
(2014)
BMC Genom.
, vol.15
-
-
Li, H.1
-
136
-
-
84929841351
-
Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X
-
COI: 1:CAS:528:DC%2BC2MXntVaiur4%3D, PID: 25904110
-
Choi, H. et al. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X. Plant Mol. Biol. 88, 233–248 (2015).
-
(2015)
Plant Mol. Biol.
, vol.88
, pp. 233-248
-
-
Choi, H.1
-
137
-
-
85044467440
-
Transcriptome analysis of chrysanthemum in responses to white rust
-
COI: 1:CAS:528:DC%2BC1cXivVSjurs%3D
-
Lu, D. et al. Transcriptome analysis of chrysanthemum in responses to white rust. Sci. Hortic. 233, 421–430 (2018).
-
(2018)
Sci. Hortic.
, vol.233
, pp. 421-430
-
-
Lu, D.1
-
138
-
-
84976498063
-
A survey of the sorghum transcriptome using single-molecule long reads
-
COI: 1:CAS:528:DC%2BC28XhtVKiurfF, PID: 27339290
-
Abdel-Ghany, S. E. et al. A survey of the sorghum transcriptome using single-molecule long reads. Nat. Commun. 7, 11706 (2016).
-
(2016)
Nat. Commun.
, vol.7
-
-
Abdel-Ghany, S.E.1
-
139
-
-
85058466266
-
Transcriptome comparative analysis of salt stress responsiveness in chrysanthemum (Dendranthema grandiflorum) roots by Illumina-and single-molecule real-time-based RNA sequencing
-
COI: 1:CAS:528:DC%2BC1cXisVCisb7K
-
Zhao, Q. et al. Transcriptome comparative analysis of salt stress responsiveness in chrysanthemum (Dendranthema grandiflorum) roots by Illumina-and single-molecule real-time-based RNA sequencing. DNA Cell Biol. 37, 1016–1030 (2018).
-
(2018)
DNA Cell Biol.
, vol.37
, pp. 1016-1030
-
-
Zhao, Q.1
-
140
-
-
0037815199
-
A functional genomics approach toward the understanding of secondary metabolism in plant cells
-
COI: 1:CAS:528:DC%2BD3sXlsFGnu7g%3D, PID: 12826618
-
Goossens, A. et al. A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc. Natl Acad. Sci. USA 100, 8595–8600 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 8595-8600
-
-
Goossens, A.1
-
141
-
-
85045124626
-
Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers
-
Ohmiya, A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed. Sci. 68, 17075 (2018).
-
(2018)
Breed. Sci.
, vol.68
, pp. 17075
-
-
Ohmiya, A.1
-
142
-
-
66249083827
-
Light-induced vegetative anthocyanin pigmentation in Petunia
-
COI: 1:CAS:528:DC%2BD1MXmtFSjurs%3D, PID: 19380423
-
Albert, N. W. et al. Light-induced vegetative anthocyanin pigmentation in Petunia. J. Exp. Bot. 60, 2191–2202 (2009).
-
(2009)
J. Exp. Bot.
, vol.60
, pp. 2191-2202
-
-
Albert, N.W.1
-
143
-
-
84928154031
-
Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum
-
COI: 1:CAS:528:DC%2BC2MXns1Witbs%3D
-
Hong, Y., Tang, X., Huang, H., Zhang, Y. & Dai, S. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genom. 16, 202 (2015).
-
(2015)
BMC Genom.
, vol.16
-
-
Hong, Y.1
Tang, X.2
Huang, H.3
Zhang, Y.4
Dai, S.5
-
144
-
-
85034585953
-
Transcriptome analysis in petals and leaves of chrysanthemums with different chlorophyll levels
-
PID: 29141585, COI: 1:CAS:528:DC%2BC1MXivVegtL8%3D
-
Ohmiya, A. et al. Transcriptome analysis in petals and leaves of chrysanthemums with different chlorophyll levels. BMC Plant Biol. 17, 202 (2017).
-
(2017)
BMC Plant Biol.
, vol.17
-
-
Ohmiya, A.1
-
145
-
-
85053008086
-
Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium ‘Chuju’
-
PID: 30194355, COI: 1:CAS:528:DC%2BC1MXlvFKquw%3D%3D
-
Yue, J. et al. Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium ‘Chuju’. Sci. Rep. 8, 13414 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Yue, J.1
-
146
-
-
84880127515
-
Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics—current achievements and perspectives
-
COI: 1:CAS:528:DC%2BC3sXhtVGrsrbO, PID: 23723162
-
Barkla, B. J. et al. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics—current achievements and perspectives. Proteomics 13, 1885–1900 (2013).
-
(2013)
Proteomics
, vol.13
, pp. 1885-1900
-
-
Barkla, B.J.1
-
147
-
-
84888039814
-
Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement
-
COI: 1:CAS:528:DC%2BC3sXhtVKntLjN
-
Vanderschuren, H., Lentz, E., Zainuddin, I. & Gruissem, W. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J. Proteom. 93, 5–19 (2013).
-
(2013)
J. Proteom.
, vol.93
, pp. 5-19
-
-
Vanderschuren, H.1
Lentz, E.2
Zainuddin, I.3
Gruissem, W.4
-
148
-
-
84890955547
-
Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation
-
Liu, R. et al. Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation. BMC Genom. 14, 919 (2013).
-
(2013)
BMC Genom.
, vol.14
-
-
Liu, R.1
-
149
-
-
84934979007
-
Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation
-
COI: 1:CAS:528:DC%2BC2MXhtVyiurrJ, PID: 26114222
-
Yao, X. et al. Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation. J. Photochem. Photobiol. B 149, 272–279 (2015).
-
(2015)
J. Photochem. Photobiol. B
, vol.149
, pp. 272-279
-
-
Yao, X.1
-
150
-
-
84865603658
-
An insight into iTRAQ: where do we stand now?
-
COI: 1:CAS:528:DC%2BC38XksFCltrc%3D, PID: 22451173
-
Evans, C. et al. An insight into iTRAQ: where do we stand now? Anal. Bioanal. Chem. 404, 1011–1027 (2012).
-
(2012)
Anal. Bioanal. Chem.
, vol.404
, pp. 1011-1027
-
-
Evans, C.1
-
151
-
-
84905509004
-
Proteomic analysis of the heat stress response in leaves of two contrasting chrysanthemum varieties
-
Zhang, Y., Sun, M. & Zhang, Q. Proteomic analysis of the heat stress response in leaves of two contrasting chrysanthemum varieties. Plant Omics 7, 229 (2014).
-
(2014)
Plant Omics
, vol.7
, pp. 229
-
-
Zhang, Y.1
Sun, M.2
Zhang, Q.3
-
152
-
-
84923313963
-
Chromosome doubling to overcome the chrysanthemum cross barrier based on insight fomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding
-
COI: 1:CAS:528:DC%2BC2MXksVyrtb8%3D, PID: 25288482
-
Zhang, F. et al. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight fomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Sci. Rep. 4, 6536 (2014).
-
(2014)
Sci. Rep.
, vol.4
-
-
Zhang, F.1
-
153
-
-
84981169506
-
Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses
-
COI: 1:CAS:528:DC%2BC2sXhvFGhsrjP
-
Zhang, F. et al. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genom. 17, 585 (2016).
-
(2016)
BMC Genom.
, vol.17
-
-
Zhang, F.1
-
154
-
-
85053527897
-
Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher
-
COI: 1:CAS:528:DC%2BC1cXhs1ynsb3F, PID: 30203234
-
Wang, F. et al. Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher. Plant Mol. Biol. 98, 233–247 (2018).
-
(2018)
Plant Mol. Biol.
, vol.98
, pp. 233-247
-
-
Wang, F.1
-
155
-
-
77953476836
-
-
(eds Town, C.) Ch.1, Springer, Dordrecht
-
Fiehn, O. in Functional Genomics (eds Town, C.) Ch.1 (Springer, Dordrecht, 2002).
-
(2002)
Functional Genomics
-
-
Fiehn, O.1
-
156
-
-
3142783843
-
Antimutagenic activity of flavonoids from Chrysanthemum morifolium
-
COI: 1:CAS:528:DC%2BD3sXovVyhs78%3D, PID: 14586095
-
Miyazawa, M. & Hisama, M. Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci. Biotechnol. Biochem. 67, 2091–2099 (2003).
-
(2003)
Biosci. Biotechnol. Biochem.
, vol.67
, pp. 2091-2099
-
-
Miyazawa, M.1
Hisama, M.2
-
157
-
-
84879039633
-
A green and effective approach for characterisation and quality control of Chrysanthemum by pressurized hot water extraction in combination with HPLC with UV absorbance detection
-
COI: 1:CAS:528:DC%2BC3sXhtFWrs7fL, PID: 23870894
-
Liu, F., Ong, E. S. & Li, S. F. Y. A green and effective approach for characterisation and quality control of Chrysanthemum by pressurized hot water extraction in combination with HPLC with UV absorbance detection. Food Chem. 141, 1807–1813 (2013).
-
(2013)
Food Chem.
, vol.141
, pp. 1807-1813
-
-
Liu, F.1
Ong, E.S.2
Li, S.F.Y.3
-
158
-
-
84911430327
-
Photoperiodic variations induce shifts in the leaf metabolic profile of Chrysanthemum morifolium
-
COI: 1:CAS:528:DC%2BC2cXhvFKltrbL
-
Kjaer, K. H. et al. Photoperiodic variations induce shifts in the leaf metabolic profile of Chrysanthemum morifolium. Funct. Plant Biol. 41, 1310–1322 (2014).
-
(2014)
Funct. Plant Biol.
, vol.41
, pp. 1310-1322
-
-
Kjaer, K.H.1
-
159
-
-
84874206168
-
Biosynthesis, function and metabolic engineering of plant volatile organic compounds
-
COI: 1:CAS:528:DC%2BC3sXjtlWntb0%3D, PID: 23383981
-
Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32 (2013).
-
(2013)
New Phytol.
, vol.198
, pp. 16-32
-
-
Dudareva, N.1
Klempien, A.2
Muhlemann, J.K.3
Kaplan, I.4
-
160
-
-
84862570447
-
PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers
-
PID: 22548501, COI: 1:CAS:528:DC%2BC38XosFSntbs%3D
-
Zvi, M. M. B. et al. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol. 195, 335–345 (2012).
-
(2012)
New Phytol.
, vol.195
, pp. 335-345
-
-
Zvi, M.M.B.1
-
161
-
-
84871531679
-
Comparative evaluation of cultivars of Chrysanthemum morifolium flowers by HPLC-DAD-ESI/MS analysis and antiallergic assay
-
COI: 1:CAS:528:DC%2BC38XhvVSjurnE, PID: 23214422
-
Xie, Y. et al. Comparative evaluation of cultivars of Chrysanthemum morifolium flowers by HPLC-DAD-ESI/MS analysis and antiallergic assay. J. Agric. Food Chem. 60, 12574–12583 (2012).
-
(2012)
J. Agric. Food Chem.
, vol.60
, pp. 12574-12583
-
-
Xie, Y.1
-
162
-
-
84928797353
-
Identification of floral scent in chrysanthemum cultivars and wild relatives by gas chromatography-mass spectrometry
-
COI: 1:CAS:528:DC%2BC2MXls1Knu7w%3D, PID: 25816078
-
Sun, H. et al. Identification of floral scent in chrysanthemum cultivars and wild relatives by gas chromatography-mass spectrometry. Molecules 20, 5346–5359 (2015).
-
(2015)
Molecules
, vol.20
, pp. 5346-5359
-
-
Sun, H.1
-
163
-
-
84951783606
-
Genotypic differences in metabolomic changes during storage induced-degreening of chrysanthemum disk florets
-
COI: 1:CAS:528:DC%2BC2MXitFSntbzM
-
van Geest, G. et al. Genotypic differences in metabolomic changes during storage induced-degreening of chrysanthemum disk florets. Postharvest Biol. Technol. 115, 48–59 (2016).
-
(2016)
Postharvest Biol. Technol.
, vol.115
, pp. 48-59
-
-
van Geest, G.1
-
164
-
-
85043376310
-
A metabolomic strategy based on integrating headspace gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry to differentiate the five cultivars of Chrysanthemum flower
-
COI: 1:CAS:528:DC%2BC1cXjs1Sgsr8%3D
-
Zhang, L., Wang, L., Shi, Z., Li, P. & Li, H. A metabolomic strategy based on integrating headspace gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry to differentiate the five cultivars of Chrysanthemum flower. RSC Adv. 8, 9074–9082 (2018).
-
(2018)
RSC Adv.
, vol.8
, pp. 9074-9082
-
-
Zhang, L.1
Wang, L.2
Shi, Z.3
Li, P.4
Li, H.5
-
165
-
-
85050722482
-
Overexpression of phosphate transporter gene CmPht1;2 facilitated pi uptake and alternated the metabolic profiles of chrysanthemum under phosphate deficiency
-
Liu, C. et al. Overexpression of phosphate transporter gene CmPht1;2 facilitated pi uptake and alternated the metabolic profiles of chrysanthemum under phosphate deficiency. Front. Plant Sci. 9, 686 (2018).
-
(2018)
Front. Plant Sci.
, vol.9
, pp. 686
-
-
Liu, C.1
-
166
-
-
84905158296
-
The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants
-
PID: 25101069
-
Coats, V. C. & Rumpho, M. E. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5, 368 (2014).
-
(2014)
Front. Microbiol.
, vol.5
, pp. 368
-
-
Coats, V.C.1
Rumpho, M.E.2
-
167
-
-
85046532495
-
Core microbiomes for sustainable agroecosystems
-
PID: 29725101
-
Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
-
(2018)
Nat. Plants
, vol.4
, pp. 247-257
-
-
Toju, H.1
-
168
-
-
84928170586
-
Recent progress in the use of ‘omics technologies in brassicaceous vegetables
-
PID: 25926843
-
Witzel, K. et al. Recent progress in the use of ‘omics technologies in brassicaceous vegetables. Front. Plant Sci. 6, 244 (2015).
-
(2015)
Front. Plant Sci.
, vol.6
, pp. 244
-
-
Witzel, K.1
-
169
-
-
0035163562
-
Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA
-
COI: 1:CAS:528:DC%2BD3MXjtVWgtg%3D%3D, PID: 11133442
-
Duineveld, B. M., Kowalchuk, G. A., Keijzer, A., van Elsas, J. D. & van Veen, J. A. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol. 67, 172–178 (2001).
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, pp. 172-178
-
-
Duineveld, B.M.1
Kowalchuk, G.A.2
Keijzer, A.3
van Elsas, J.D.4
van Veen, J.A.5
-
170
-
-
84887445600
-
The abundance and diversity of soil fungi in continuously monocropped chrysanthemum
-
Song, A. et al. The abundance and diversity of soil fungi in continuously monocropped chrysanthemum. Scientific World J. 2013, 632920 (2013).
-
(2013)
Scientific World J
, vol.2013
-
-
Song, A.1
-
171
-
-
77952988672
-
Growth and quality of Chrysanthemum produced in greenhouse
-
Farias, M. Fd & Saad, J. C. C. Growth and quality of Chrysanthemum produced in greenhouse. Hortic. Bras. 23, 740–742 (2005).
-
(2005)
Hortic. Bras.
, vol.23
, pp. 740-742
-
-
Farias, M.F.1
Saad, J.C.C.2
-
172
-
-
84983371523
-
Improvement in continuous cropping of cut chrysanthemum by phanerochaete chrysosporium
-
COI: 1:CAS:528:DC%2BC2sXhvVGltLzO
-
Liu, L. et al. Improvement in continuous cropping of cut chrysanthemum by phanerochaete chrysosporium. Pak. J. Bot. 48, 1453–1457 (2016).
-
(2016)
Pak. J. Bot.
, vol.48
, pp. 1453-1457
-
-
Liu, L.1
-
173
-
-
85053469447
-
Effect of Pseudomonas putida on chrysanthemum growth under greenhouse and field conditions
-
COI: 1:CAS:528:DC%2BC1MXnt1Gmtbk%3D
-
Cipriano, M. A. & Freitas, S. S. Effect of Pseudomonas putida on chrysanthemum growth under greenhouse and field conditions. Afr. J. Agric. Res. 13, 302–310 (2018).
-
(2018)
Afr. J. Agric. Res.
, vol.13
, pp. 302-310
-
-
Cipriano, M.A.1
Freitas, S.S.2
-
174
-
-
84876135578
-
Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L. var oleifera) evaluated through next-generation sequencing technology
-
PID: 23064947, COI: 1:CAS:528:DC%2BC3sXlvVWjtLo%3D
-
de Campos, S. B. et al. Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L. var oleifera) evaluated through next-generation sequencing technology. Microb. Ecol. 65, 593–601 (2013).
-
(2013)
Microb. Ecol.
, vol.65
, pp. 593-601
-
-
de Campos, S.B.1
-
175
-
-
84902279711
-
Analysis of plant microbe interactions in the era of next generation sequencing technologies
-
PID: 24904612
-
Knief, C. Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front. Plant Sci. 5, 216 (2014).
-
(2014)
Front. Plant Sci.
, vol.5
, pp. 216
-
-
Knief, C.1
-
176
-
-
78549246207
-
Phenomics: the next challenge
-
COI: 1:CAS:528:DC%2BC3cXhsVejs7jK, PID: 21085204
-
Houle, D., Govindaraju, D. R. & Omholt, S. Phenomics: the next challenge. Nat. Rev. Genet. 11, 855 (2010).
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 855
-
-
Houle, D.1
Govindaraju, D.R.2
Omholt, S.3
-
177
-
-
84873705057
-
Image analysis is driving a renaissance in growth measurement
-
PID: 23352714
-
Spalding, E. P. & Miller, N. D. Image analysis is driving a renaissance in growth measurement. Curr. Opin. Plant Biol. 16, 100–104 (2013).
-
(2013)
Curr. Opin. Plant Biol.
, vol.16
, pp. 100-104
-
-
Spalding, E.P.1
Miller, N.D.2
-
178
-
-
85019176819
-
‘Omics’ approaches in tomato aimed at identifying candidate genes for ascorbic acid accumulation in the fruit
-
COI: 1:CAS:528:DC%2BC2cXntVWnsbc%3D
-
Sacco, A., Ruggieri, V., Molisso, M. & Barone, A. ‘Omics’ approaches in tomato aimed at identifying candidate genes for ascorbic acid accumulation in the fruit. Afr. J. Biotechnol. 12, 6791–6800 (2013).
-
(2013)
Afr. J. Biotechnol.
, vol.12
, pp. 6791-6800
-
-
Sacco, A.1
Ruggieri, V.2
Molisso, M.3
Barone, A.4
-
179
-
-
78650417880
-
Making the most of ‘omics’ for crop breeding
-
COI: 1:CAS:528:DC%2BC3cXhs1ajtrrL, PID: 21030098
-
Langridge, P. & Fleury, D. Making the most of ‘omics’ for crop breeding. Trends Biotechnol. 29, 33–40 (2011).
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 33-40
-
-
Langridge, P.1
Fleury, D.2
-
180
-
-
84961927084
-
Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets
-
COI: 1:CAS:528:DC%2BC28XkvFGrs7g%3D, PID: 27019110
-
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481 (2016).
-
(2016)
Nat. Genet.
, vol.48
, pp. 481
-
-
Zhu, Z.1
-
181
-
-
85054193843
-
Identification of potential mechanism and hub genes for neuropathic pain by expression-based genome-wide association study
-
COI: 1:CAS:528:DC%2BC1cXhvVahtr7K, PID: 30269359
-
Gu, Y. et al. Identification of potential mechanism and hub genes for neuropathic pain by expression-based genome-wide association study. J. Cell. Biochem. 120, 4912–4923 (2019).
-
(2019)
J. Cell. Biochem.
, vol.120
, pp. 4912-4923
-
-
Gu, Y.1
-
182
-
-
85056347025
-
Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism
-
COI: 1:CAS:528:DC%2BC1cXitFGgur7O, PID: 30231195
-
Fang, C. & Luo, J. Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism. Plant J. 97, 91–100 (2019).
-
(2019)
Plant J.
, vol.97
, pp. 91-100
-
-
Fang, C.1
Luo, J.2
|