메뉴 건너뛰기




Volumn 45, Issue 22, 2017, Pages E179-

Erratum: Linnorm: improved statistical analysis for single cell RNA-seq expression data (Nucleic Acids Research (2017) DOI: 10.1093/nar/gkx828);Linnorm: improved statistical analysis for single cell RNA-seq expression data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BIOTRANSFORMATION; CELL HETEROGENEITY; CELL SUBPOPULATION; CLINICAL EVALUATION; COMPUTER MODEL; CONTROLLED STUDY; DIFFERENTIAL GENE EXPRESSION; GENE EXPRESSION; GENETIC STABILITY; HUMAN; HUMAN CELL; MEASUREMENT ACCURACY; PROCESS OPTIMIZATION; SINGLE CELL RNA SEQ; STATISTICAL ANALYSIS; BIOSTATISTICS; CLASSIFICATION; CLUSTER ANALYSIS; GENE EXPRESSION PROFILING; GENETICS; PROCEDURES; REPRODUCIBILITY; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS; STATISTICAL MODEL;

EID: 85040554215     PISSN: 03051048     EISSN: 13624962     Source Type: Journal    
DOI: 10.1093/NAR/GKX1189     Document Type: Erratum
Times cited : (86)

References (32)
  • 1
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang,Z., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57-63.
    • (2009) Nat. Rev. Genet , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 4
    • 84890060756 scopus 로고    scopus 로고
    • SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization
    • Katayama,S., Tohonen,V., Linnarsson,S. and Kere,J. (2013) SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics, 29, 2943-2945.
    • (2013) Bioinformatics , vol.29 , pp. 2943-2945
    • Katayama, S.1    Tohonen, V.2    Linnarsson, S.3    Kere, J.4
  • 5
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun,A.T., Bach,K. and Marioni,J.C. (2016) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol., 17, 75.
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 6
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA sequencing data using observation weights
    • Zhou,X., Lindsay,H. and Robinson,M.D. (2014) Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res., 42, e91.
    • (2014) Nucleic Acids Res , vol.42 , pp. e91
    • Zhou, X.1    Lindsay, H.2    Robinson, M.D.3
  • 7
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 8
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie,M.E., Phipson,B., Wu,D., Hu,Y., Law,C.W., Shi,W. and Smyth,G.K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.
    • (2015) Nucleic Acids Res , vol.43 , pp. e47
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6    Smyth, G.K.7
  • 9
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson,M.D. and Oshlack,A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 11
    • 84896735766 scopus 로고    scopus 로고
    • voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law,C.W., Chen,Y., Shi,W. and Smyth,G.K. (2014) voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 14
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: understanding changes in gene expression at the single-cell level
    • Vallejos,C.A., Richardson,S. and Marioni,J.C. (2016) Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol., 17, 1.
    • (2016) Genome Biol , vol.17 , pp. 1
    • Vallejos, C.A.1    Richardson, S.2    Marioni, J.C.3
  • 16
    • 84990978733 scopus 로고    scopus 로고
    • Combining dependent P-values with an empirical adaptation of Brown's method
    • Poole,W., Gibbs,D.L., Shmulevich,I., Bernard,B. and Knijnenburg,T.A. (2016) Combining dependent P-values with an empirical adaptation of Brown's method. Bioinformatics, 32, i430-i436.
    • (2016) Bioinformatics , vol.32 , pp. i430-i436
    • Poole, W.1    Gibbs, D.L.2    Shmulevich, I.3    Bernard, B.4    Knijnenburg, T.A.5
  • 18
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng,Q., Ramskold,D., Reinius,B. and Sandberg,R. (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343, 193-196.
    • (2014) Science , vol.343 , pp. 193-196
    • Deng, Q.1    Ramskold, D.2    Reinius, B.3    Sandberg, R.4
  • 21
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • SEQC/MAQC-III Consortium
    • SEQC/MAQC-III Consortium. (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol., 32, 903-914.
    • (2014) Nat. Biotechnol , vol.32 , pp. 903-914
  • 22
    • 84905049901 scopus 로고    scopus 로고
    • Trimmomatic: a flexible trimmer for Illumina sequence data
    • Bolger,A.M., Lohse,M. and Usadel,B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.
    • (2014) Bioinformatics , vol.30 , pp. 2114-2120
    • Bolger, A.M.1    Lohse, M.2    Usadel, B.3
  • 25
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher,R. and Kendziorski,C. (2016) Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol., 17, 63.
    • (2016) Genome Biol , vol.17 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 26
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle,O., Teichmann,S.A. and Marioni,J.C. (2015) Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet., 16, 133-145.
    • (2015) Nat. Rev. Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 31
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson,C. and Delorenzi,M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.