메뉴 건너뛰기




Volumn 177, Issue , 2016, Pages 793-803

A novel bidirectional mechanism based on time series model for wind power forecasting

Author keywords

Extreme learning machine; Optimization algorithm; Wind farm; Wind power forecasting

Indexed keywords

ALGORITHMS; ELECTRIC UTILITIES; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; OPTIMIZATION; TIME SERIES; WIND POWER;

EID: 84973457857     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2016.03.096     Document Type: Article
Times cited : (209)

References (58)
  • 1
    • 84973510746 scopus 로고    scopus 로고
    • http://www.wwindea.org/the-world-sets-new-wind-installations-record-637-gw-new-capacity-in-2015.
  • 2
    • 84897572485 scopus 로고    scopus 로고
    • Wind turbine condition monitoring: technical and commercial challenges
    • Yang W., Tavner P.J., Crabtree C.J., et al. Wind turbine condition monitoring: technical and commercial challenges. Wind Energy 2014, 17(5):673-693.
    • (2014) Wind Energy , vol.17 , Issue.5 , pp. 673-693
    • Yang, W.1    Tavner, P.J.2    Crabtree, C.J.3
  • 3
    • 84887970293 scopus 로고    scopus 로고
    • A comprehensive review on wind turbine power curve modeling techniques
    • Lydia M., Kumar S.S., Selvakumar A.I., et al. A comprehensive review on wind turbine power curve modeling techniques. Renew Sustain Energy Rev 2014, 30:452-460.
    • (2014) Renew Sustain Energy Rev , vol.30 , pp. 452-460
    • Lydia, M.1    Kumar, S.S.2    Selvakumar, A.I.3
  • 4
    • 84911460855 scopus 로고    scopus 로고
    • Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms
    • Yongning Z.H.A.O., Lin Y.E., Qianwen Z.H.U. Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms. Automation Electric Power Syst 2014, 38(21):39-46. 10.7500/AEPS20131213010.
    • (2014) Automation Electric Power Syst , vol.38 , Issue.21 , pp. 39-46
    • Yongning, Z.H.A.O.1    Lin, Y.E.2    Qianwen, Z.H.U.3
  • 5
    • 79960180649 scopus 로고    scopus 로고
    • Spatial and temporal analysis of electric wind generation intermittency and dynamics
    • Tarroja B., Mueller F., Eichman J.D., et al. Spatial and temporal analysis of electric wind generation intermittency and dynamics. Renewable Energy 2011, 36(12):3424-3432.
    • (2011) Renewable Energy , vol.36 , Issue.12 , pp. 3424-3432
    • Tarroja, B.1    Mueller, F.2    Eichman, J.D.3
  • 6
    • 84869873450 scopus 로고    scopus 로고
    • Correlated wind-power production and electric load scenarios for investment decisions
    • Baringo L., Conejo A.J. Correlated wind-power production and electric load scenarios for investment decisions. Appl Energy 2013, 101:475-482.
    • (2013) Appl Energy , vol.101 , pp. 475-482
    • Baringo, L.1    Conejo, A.J.2
  • 7
    • 65949122124 scopus 로고    scopus 로고
    • Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece
    • Xydis G., Koroneos C., Loizidou M. Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece. Appl Energy 2009, 86(11):2411-2420.
    • (2009) Appl Energy , vol.86 , Issue.11 , pp. 2411-2420
    • Xydis, G.1    Koroneos, C.2    Loizidou, M.3
  • 8
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • Fadare D.A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 2010, 87(3):934-942.
    • (2010) Appl Energy , vol.87 , Issue.3 , pp. 934-942
    • Fadare, D.A.1
  • 9
    • 84938087297 scopus 로고    scopus 로고
    • Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods
    • Zhang J., Draxl C., Hopson T., et al. Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. Appl Energy 2015, 156:528-541.
    • (2015) Appl Energy , vol.156 , pp. 528-541
    • Zhang, J.1    Draxl, C.2    Hopson, T.3
  • 10
    • 85014519424 scopus 로고    scopus 로고
    • Real-time impact of power balancing on power system operation with large scale integration of wind power
    • Basit A, Hansen AD, Sørensen PE, et al. Real-time impact of power balancing on power system operation with large scale integration of wind power. J Modern Power Syst Clean Energy, p. 1-9. http://dx.doi.org/10.1007/s40565-015-0163-6. doi:10.1007/s40565-015-0163-6.
    • J Modern Power Syst Clean Energy , pp. 1-9
    • Basit, A.1    Hansen, A.D.2    Sørensen, P.E.3
  • 11
    • 84912093100 scopus 로고    scopus 로고
    • Review of energy storage system for wind power integration support
    • Zhao H., Wu Q., Hu S., et al. Review of energy storage system for wind power integration support. Appl Energy 2015, 137:545-553.
    • (2015) Appl Energy , vol.137 , pp. 545-553
    • Zhao, H.1    Wu, Q.2    Hu, S.3
  • 12
    • 84937146056 scopus 로고    scopus 로고
    • Survey of wind farm control-power and fatigue optimization
    • Knudsen T., Bak T., Svenstrup M. Survey of wind farm control-power and fatigue optimization. Wind Energy 2015, 18(8):1333-1351.
    • (2015) Wind Energy , vol.18 , Issue.8 , pp. 1333-1351
    • Knudsen, T.1    Bak, T.2    Svenstrup, M.3
  • 13
    • 84952937573 scopus 로고    scopus 로고
    • A data-driven, cooperative wind farm control to maximize the total power production
    • Park J., Law K.H. A data-driven, cooperative wind farm control to maximize the total power production. Appl Energy 2016, 165:151-165.
    • (2016) Appl Energy , vol.165 , pp. 151-165
    • Park, J.1    Law, K.H.2
  • 14
    • 84892960976 scopus 로고    scopus 로고
    • Current status and future advances for wind speed and power forecasting
    • Jung J., Broadwater R.P. Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 2014, 31:762-777.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 762-777
    • Jung, J.1    Broadwater, R.P.2
  • 15
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • Foley A.M., Leahy P.G., Marvuglia A., et al. Current methods and advances in forecasting of wind power generation. Renewable Energy 2012, 37(1):1-8.
    • (2012) Renewable Energy , vol.37 , Issue.1 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuglia, A.3
  • 16
    • 84905124758 scopus 로고    scopus 로고
    • A review on wind power prediction based on spatial correlation approach
    • Lin Y.E., Yongning Z.H.A.O. A review on wind power prediction based on spatial correlation approach. Automat Electric Power Syst 2014, 38(14):126-135. 10.7500/AEPS20130911004.
    • (2014) Automat Electric Power Syst , vol.38 , Issue.14 , pp. 126-135
    • Lin, Y.E.1    Yongning, Z.H.A.O.2
  • 18
    • 79959375425 scopus 로고    scopus 로고
    • Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
    • De Giorgi M.G., Ficarella A., Tarantino M. Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 2011, 36(7):3968-3978.
    • (2011) Energy , vol.36 , Issue.7 , pp. 3968-3978
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 19
    • 60949099322 scopus 로고    scopus 로고
    • Comparison of two new short-term wind-power forecasting systems
    • Ramirez-Rosado I.J., Fernandez-Jimenez L.A., Monteiro C., et al. Comparison of two new short-term wind-power forecasting systems. Renewable Energy 2009, 34(7):1848-1854.
    • (2009) Renewable Energy , vol.34 , Issue.7 , pp. 1848-1854
    • Ramirez-Rosado, I.J.1    Fernandez-Jimenez, L.A.2    Monteiro, C.3
  • 20
    • 84867988966 scopus 로고    scopus 로고
    • Probabilistic wind power forecasting using radial basis function neural networks
    • Sideratos G., Hatziargyriou N.D. Probabilistic wind power forecasting using radial basis function neural networks. Power Syst, IEEE Trans 2012, 27(4):1788-1796.
    • (2012) Power Syst, IEEE Trans , vol.27 , Issue.4 , pp. 1788-1796
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 21
    • 84919658679 scopus 로고    scopus 로고
    • A novel application of an analog ensemble for short-term wind power forecasting
    • Alessandrini S., Delle Monache L., Sperati S., et al. A novel application of an analog ensemble for short-term wind power forecasting. Renewable Energy 2015, 76:768-781.
    • (2015) Renewable Energy , vol.76 , pp. 768-781
    • Alessandrini, S.1    Delle Monache, L.2    Sperati, S.3
  • 23
    • 84876303697 scopus 로고    scopus 로고
    • Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting
    • Poncela M., Poncela P., Perán J.R. Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting. Appl Energy 2013, 108:349-362.
    • (2013) Appl Energy , vol.108 , pp. 349-362
    • Poncela, M.1    Poncela, P.2    Perán, J.R.3
  • 24
    • 33747604390 scopus 로고    scopus 로고
    • Grey predictor for wind energy conversion systems output power prediction
    • El-Fouly T.H.M., El-Saadany E.F., Salama M.M.A. Grey predictor for wind energy conversion systems output power prediction. Power Syst, IEEE Trans 2006, 21(3):1450-1452.
    • (2006) Power Syst, IEEE Trans , vol.21 , Issue.3 , pp. 1450-1452
    • El-Fouly, T.H.M.1    El-Saadany, E.F.2    Salama, M.M.A.3
  • 25
    • 84922697904 scopus 로고    scopus 로고
    • Markov chain modeling for very-short-term wind power forecasting
    • Carpinone A., Giorgio M., Langella R., et al. Markov chain modeling for very-short-term wind power forecasting. Electric Power Syst Res 2015, 122:152-158.
    • (2015) Electric Power Syst Res , vol.122 , pp. 152-158
    • Carpinone, A.1    Giorgio, M.2    Langella, R.3
  • 26
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87(7):2313-2320.
    • (2010) Appl Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 27
    • 34547909295 scopus 로고    scopus 로고
    • Short-term wind power forecast based on ARX models
    • Duran M.J., Cros D., Riquelme J. Short-term wind power forecast based on ARX models. J Energy Eng 2007, 133(3):172-180.
    • (2007) J Energy Eng , vol.133 , Issue.3 , pp. 172-180
    • Duran, M.J.1    Cros, D.2    Riquelme, J.3
  • 28
    • 35549001332 scopus 로고    scopus 로고
    • Short term wind speed forecasting for wind turbine applications using linear prediction method
    • Riahy G.H., Abedi M. Short term wind speed forecasting for wind turbine applications using linear prediction method. Renewable Energy 2008, 33(1):35-41.
    • (2008) Renewable Energy , vol.33 , Issue.1 , pp. 35-41
    • Riahy, G.H.1    Abedi, M.2
  • 29
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Kavasseri R.G., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy 2009, 34(5):1388-1393.
    • (2009) Renewable Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 30
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem E., Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011, 88(4):1405-1414.
    • (2011) Appl Energy , vol.88 , Issue.4 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 31
    • 78650561071 scopus 로고    scopus 로고
    • Error analysis of short term wind power prediction models
    • De Giorgi M.G., Ficarella A., Tarantino M. Error analysis of short term wind power prediction models. Appl Energy 2011, 88(4):1298-1311.
    • (2011) Appl Energy , vol.88 , Issue.4 , pp. 1298-1311
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 32
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • Zhou J., Shi J., Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 2011, 52(4):1990-1998.
    • (2011) Energy Convers Manage , vol.52 , Issue.4 , pp. 1990-1998
    • Zhou, J.1    Shi, J.2    Li, G.3
  • 33
    • 84949681323 scopus 로고    scopus 로고
    • A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
    • Wang J., Hu J. A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 2015, 93:41-56.
    • (2015) Energy , vol.93 , pp. 41-56
    • Wang, J.1    Hu, J.2
  • 34
    • 84929146225 scopus 로고    scopus 로고
    • Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
    • Liu H., Tian H., Li Y. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers Manage 2015, 100:16-22.
    • (2015) Energy Convers Manage , vol.100 , pp. 16-22
    • Liu, H.1    Tian, H.2    Li, Y.3
  • 35
    • 84897459902 scopus 로고    scopus 로고
    • A review of combined approaches for prediction of short-term wind speed and power
    • Tascikaraoglu A., Uzunoglu M. A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 2014, 34:243-254.
    • (2014) Renew Sustain Energy Rev , vol.34 , pp. 243-254
    • Tascikaraoglu, A.1    Uzunoglu, M.2
  • 36
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu H., Tian H., Li Y. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energy 2012, 98:415-424.
    • (2012) Appl Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.2    Li, Y.3
  • 37
    • 84866534364 scopus 로고    scopus 로고
    • A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power
    • Zhang Q., Lai K.K., Niu D., et al. A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power. Energies 2012, 5(9):3329-3346.
    • (2012) Energies , vol.5 , Issue.9 , pp. 3329-3346
    • Zhang, Q.1    Lai, K.K.2    Niu, D.3
  • 38
    • 84945934357 scopus 로고    scopus 로고
    • Dynamic optimal combination model considering adaptive exponential for ultra short term wind power prediction
    • Lin Ye, Qianwen Zhu, Yongning Zhao Dynamic optimal combination model considering adaptive exponential for ultra short term wind power prediction. Automat Electric Power Syst 2015, 39(20):12-18. 10.7500/AEPS20141128002.
    • (2015) Automat Electric Power Syst , vol.39 , Issue.20 , pp. 12-18
    • Lin, Y.1    Qianwen, Z.2    Yongning, Z.3
  • 39
    • 84906911087 scopus 로고    scopus 로고
    • Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
    • De Giorgi M.G., Campilongo S., Ficarella A., et al. Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 2014, 7(8):5251-5272.
    • (2014) Energies , vol.7 , Issue.8 , pp. 5251-5272
    • De Giorgi, M.G.1    Campilongo, S.2    Ficarella, A.3
  • 40
    • 84859094795 scopus 로고    scopus 로고
    • Short-term wind power prediction using a wavelet support vector machine
    • Zeng J., Qiao W. Short-term wind power prediction using a wavelet support vector machine. Sust Energy, IEEE Trans 2012, 3(2):255-264.
    • (2012) Sust Energy, IEEE Trans , vol.3 , Issue.2 , pp. 255-264
    • Zeng, J.1    Qiao, W.2
  • 41
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
    • Liu H., Tian H., Pan D., et al. Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl Energy 2013, 107:191-208.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.2    Pan, D.3
  • 42
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo Z., Zhao W., Lu H., et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012, 37(1):241-249.
    • (2012) Renewable Energy , vol.37 , Issue.1 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3
  • 43
    • 84939789758 scopus 로고    scopus 로고
    • Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
    • Liu H., Tian H., Liang X., et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl Energy 2015, 157:183-194.
    • (2015) Appl Energy , vol.157 , pp. 183-194
    • Liu, H.1    Tian, H.2    Liang, X.3
  • 44
    • 82055184071 scopus 로고    scopus 로고
    • Combined model based on EMD-SVM for short-term wind power prediction
    • Lin Y.E., Peng L.I.U. Combined model based on EMD-SVM for short-term wind power prediction. Proc CSEE 2011, 31(31):102-108.
    • (2011) Proc CSEE , vol.31 , Issue.31 , pp. 102-108
    • Lin, Y.E.1    Peng, L.I.U.2
  • 45
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E., Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renewable Energy 2010, 35(12):2732-2738.
    • (2010) Renewable Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 47
    • 84858289782 scopus 로고    scopus 로고
    • Evolutive design of ARMA and ANN models for time series forecasting
    • Flores J.J., Graff M., Rodriguez H. Evolutive design of ARMA and ANN models for time series forecasting. Renewable Energy 2012, 44:225-230.
    • (2012) Renewable Energy , vol.44 , pp. 225-230
    • Flores, J.J.1    Graff, M.2    Rodriguez, H.3
  • 48
    • 84958154004 scopus 로고    scopus 로고
    • Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
    • Meng A., Ge J., Yin H., et al. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 2016, 114:75-88.
    • (2016) Energy Convers Manage , vol.114 , pp. 75-88
    • Meng, A.1    Ge, J.2    Yin, H.3
  • 49
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • Osório G.J., Matias J.C.O., Catalão J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renewable Energy 2015, 75:301-307.
    • (2015) Renewable Energy , vol.75 , pp. 301-307
    • Osório, G.J.1    Matias, J.C.O.2    Catalão, J.P.S.3
  • 50
    • 84946594359 scopus 로고    scopus 로고
    • An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
    • Zhao J., Guo Z.H., Su Z.Y., et al. An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl Energy 2016, 162:808-826.
    • (2016) Appl Energy , vol.162 , pp. 808-826
    • Zhao, J.1    Guo, Z.H.2    Su, Z.Y.3
  • 51
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 52
    • 67650355939 scopus 로고    scopus 로고
    • Introduction to derivative-free optimization
    • Siam
    • Conn AR, Scheinberg K, Vicente LN. Introduction to derivative-free optimization. Siam, 2009.
    • (2009)
    • Conn, A.R.1    Scheinberg, K.2    Vicente, L.N.3
  • 53
    • 0003408774 scopus 로고    scopus 로고
    • Matlab Optimization Toolbox User's Guide
    • Version 5. Math Works, Incorporated
    • MathWorks, Inc., Matlab Optimization Toolbox User's Guide, Version 5. Math Works, Incorporated, 2010.
    • (2010)
  • 55
    • 79960287766 scopus 로고    scopus 로고
    • A comprehensive error evaluation method for short-term wind power prediction
    • Man Xu, Ying Qiao, Zongxiang Lu A comprehensive error evaluation method for short-term wind power prediction. Automat Electric Power Syst 2011, 35(12):20-26.
    • (2011) Automat Electric Power Syst , vol.35 , Issue.12 , pp. 20-26
    • Man, X.1    Ying, Q.2    Zongxiang, L.3
  • 56
    • 84929332562 scopus 로고    scopus 로고
    • Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate
    • De Giorgi M.G., Congedo P.M., Malvoni M., et al. Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate. Energy Convers Manage 2015, 100:117-130.
    • (2015) Energy Convers Manage , vol.100 , pp. 117-130
    • De Giorgi, M.G.1    Congedo, P.M.2    Malvoni, M.3
  • 57
    • 19144369129 scopus 로고    scopus 로고
    • On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors
    • Lange M. On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors. J SolEnergy Eng 2005, 127(2):177-184.
    • (2005) J SolEnergy Eng , vol.127 , Issue.2 , pp. 177-184
    • Lange, M.1
  • 58
    • 84973512431 scopus 로고    scopus 로고
    • http://www.nrel.gov/electricity/transmission/eastern_wind_methodology.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.