-
1
-
-
84973510746
-
-
http://www.wwindea.org/the-world-sets-new-wind-installations-record-637-gw-new-capacity-in-2015.
-
-
-
-
2
-
-
84897572485
-
Wind turbine condition monitoring: technical and commercial challenges
-
Yang W., Tavner P.J., Crabtree C.J., et al. Wind turbine condition monitoring: technical and commercial challenges. Wind Energy 2014, 17(5):673-693.
-
(2014)
Wind Energy
, vol.17
, Issue.5
, pp. 673-693
-
-
Yang, W.1
Tavner, P.J.2
Crabtree, C.J.3
-
3
-
-
84887970293
-
A comprehensive review on wind turbine power curve modeling techniques
-
Lydia M., Kumar S.S., Selvakumar A.I., et al. A comprehensive review on wind turbine power curve modeling techniques. Renew Sustain Energy Rev 2014, 30:452-460.
-
(2014)
Renew Sustain Energy Rev
, vol.30
, pp. 452-460
-
-
Lydia, M.1
Kumar, S.S.2
Selvakumar, A.I.3
-
4
-
-
84911460855
-
Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms
-
Yongning Z.H.A.O., Lin Y.E., Qianwen Z.H.U. Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms. Automation Electric Power Syst 2014, 38(21):39-46. 10.7500/AEPS20131213010.
-
(2014)
Automation Electric Power Syst
, vol.38
, Issue.21
, pp. 39-46
-
-
Yongning, Z.H.A.O.1
Lin, Y.E.2
Qianwen, Z.H.U.3
-
5
-
-
79960180649
-
Spatial and temporal analysis of electric wind generation intermittency and dynamics
-
Tarroja B., Mueller F., Eichman J.D., et al. Spatial and temporal analysis of electric wind generation intermittency and dynamics. Renewable Energy 2011, 36(12):3424-3432.
-
(2011)
Renewable Energy
, vol.36
, Issue.12
, pp. 3424-3432
-
-
Tarroja, B.1
Mueller, F.2
Eichman, J.D.3
-
6
-
-
84869873450
-
Correlated wind-power production and electric load scenarios for investment decisions
-
Baringo L., Conejo A.J. Correlated wind-power production and electric load scenarios for investment decisions. Appl Energy 2013, 101:475-482.
-
(2013)
Appl Energy
, vol.101
, pp. 475-482
-
-
Baringo, L.1
Conejo, A.J.2
-
7
-
-
65949122124
-
Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece
-
Xydis G., Koroneos C., Loizidou M. Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece. Appl Energy 2009, 86(11):2411-2420.
-
(2009)
Appl Energy
, vol.86
, Issue.11
, pp. 2411-2420
-
-
Xydis, G.1
Koroneos, C.2
Loizidou, M.3
-
8
-
-
71849085127
-
The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
-
Fadare D.A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 2010, 87(3):934-942.
-
(2010)
Appl Energy
, vol.87
, Issue.3
, pp. 934-942
-
-
Fadare, D.A.1
-
9
-
-
84938087297
-
Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods
-
Zhang J., Draxl C., Hopson T., et al. Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. Appl Energy 2015, 156:528-541.
-
(2015)
Appl Energy
, vol.156
, pp. 528-541
-
-
Zhang, J.1
Draxl, C.2
Hopson, T.3
-
10
-
-
85014519424
-
Real-time impact of power balancing on power system operation with large scale integration of wind power
-
Basit A, Hansen AD, Sørensen PE, et al. Real-time impact of power balancing on power system operation with large scale integration of wind power. J Modern Power Syst Clean Energy, p. 1-9. http://dx.doi.org/10.1007/s40565-015-0163-6. doi:10.1007/s40565-015-0163-6.
-
J Modern Power Syst Clean Energy
, pp. 1-9
-
-
Basit, A.1
Hansen, A.D.2
Sørensen, P.E.3
-
11
-
-
84912093100
-
Review of energy storage system for wind power integration support
-
Zhao H., Wu Q., Hu S., et al. Review of energy storage system for wind power integration support. Appl Energy 2015, 137:545-553.
-
(2015)
Appl Energy
, vol.137
, pp. 545-553
-
-
Zhao, H.1
Wu, Q.2
Hu, S.3
-
12
-
-
84937146056
-
Survey of wind farm control-power and fatigue optimization
-
Knudsen T., Bak T., Svenstrup M. Survey of wind farm control-power and fatigue optimization. Wind Energy 2015, 18(8):1333-1351.
-
(2015)
Wind Energy
, vol.18
, Issue.8
, pp. 1333-1351
-
-
Knudsen, T.1
Bak, T.2
Svenstrup, M.3
-
13
-
-
84952937573
-
A data-driven, cooperative wind farm control to maximize the total power production
-
Park J., Law K.H. A data-driven, cooperative wind farm control to maximize the total power production. Appl Energy 2016, 165:151-165.
-
(2016)
Appl Energy
, vol.165
, pp. 151-165
-
-
Park, J.1
Law, K.H.2
-
14
-
-
84892960976
-
Current status and future advances for wind speed and power forecasting
-
Jung J., Broadwater R.P. Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 2014, 31:762-777.
-
(2014)
Renew Sustain Energy Rev
, vol.31
, pp. 762-777
-
-
Jung, J.1
Broadwater, R.P.2
-
15
-
-
79961126223
-
Current methods and advances in forecasting of wind power generation
-
Foley A.M., Leahy P.G., Marvuglia A., et al. Current methods and advances in forecasting of wind power generation. Renewable Energy 2012, 37(1):1-8.
-
(2012)
Renewable Energy
, vol.37
, Issue.1
, pp. 1-8
-
-
Foley, A.M.1
Leahy, P.G.2
Marvuglia, A.3
-
16
-
-
84905124758
-
A review on wind power prediction based on spatial correlation approach
-
Lin Y.E., Yongning Z.H.A.O. A review on wind power prediction based on spatial correlation approach. Automat Electric Power Syst 2014, 38(14):126-135. 10.7500/AEPS20130911004.
-
(2014)
Automat Electric Power Syst
, vol.38
, Issue.14
, pp. 126-135
-
-
Lin, Y.E.1
Yongning, Z.H.A.O.2
-
18
-
-
79959375425
-
Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
-
De Giorgi M.G., Ficarella A., Tarantino M. Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 2011, 36(7):3968-3978.
-
(2011)
Energy
, vol.36
, Issue.7
, pp. 3968-3978
-
-
De Giorgi, M.G.1
Ficarella, A.2
Tarantino, M.3
-
19
-
-
60949099322
-
Comparison of two new short-term wind-power forecasting systems
-
Ramirez-Rosado I.J., Fernandez-Jimenez L.A., Monteiro C., et al. Comparison of two new short-term wind-power forecasting systems. Renewable Energy 2009, 34(7):1848-1854.
-
(2009)
Renewable Energy
, vol.34
, Issue.7
, pp. 1848-1854
-
-
Ramirez-Rosado, I.J.1
Fernandez-Jimenez, L.A.2
Monteiro, C.3
-
20
-
-
84867988966
-
Probabilistic wind power forecasting using radial basis function neural networks
-
Sideratos G., Hatziargyriou N.D. Probabilistic wind power forecasting using radial basis function neural networks. Power Syst, IEEE Trans 2012, 27(4):1788-1796.
-
(2012)
Power Syst, IEEE Trans
, vol.27
, Issue.4
, pp. 1788-1796
-
-
Sideratos, G.1
Hatziargyriou, N.D.2
-
21
-
-
84919658679
-
A novel application of an analog ensemble for short-term wind power forecasting
-
Alessandrini S., Delle Monache L., Sperati S., et al. A novel application of an analog ensemble for short-term wind power forecasting. Renewable Energy 2015, 76:768-781.
-
(2015)
Renewable Energy
, vol.76
, pp. 768-781
-
-
Alessandrini, S.1
Delle Monache, L.2
Sperati, S.3
-
23
-
-
84876303697
-
Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting
-
Poncela M., Poncela P., Perán J.R. Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting. Appl Energy 2013, 108:349-362.
-
(2013)
Appl Energy
, vol.108
, pp. 349-362
-
-
Poncela, M.1
Poncela, P.2
Perán, J.R.3
-
24
-
-
33747604390
-
Grey predictor for wind energy conversion systems output power prediction
-
El-Fouly T.H.M., El-Saadany E.F., Salama M.M.A. Grey predictor for wind energy conversion systems output power prediction. Power Syst, IEEE Trans 2006, 21(3):1450-1452.
-
(2006)
Power Syst, IEEE Trans
, vol.21
, Issue.3
, pp. 1450-1452
-
-
El-Fouly, T.H.M.1
El-Saadany, E.F.2
Salama, M.M.A.3
-
25
-
-
84922697904
-
Markov chain modeling for very-short-term wind power forecasting
-
Carpinone A., Giorgio M., Langella R., et al. Markov chain modeling for very-short-term wind power forecasting. Electric Power Syst Res 2015, 122:152-158.
-
(2015)
Electric Power Syst Res
, vol.122
, pp. 152-158
-
-
Carpinone, A.1
Giorgio, M.2
Langella, R.3
-
26
-
-
77953137822
-
On comparing three artificial neural networks for wind speed forecasting
-
Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87(7):2313-2320.
-
(2010)
Appl Energy
, vol.87
, Issue.7
, pp. 2313-2320
-
-
Li, G.1
Shi, J.2
-
27
-
-
34547909295
-
Short-term wind power forecast based on ARX models
-
Duran M.J., Cros D., Riquelme J. Short-term wind power forecast based on ARX models. J Energy Eng 2007, 133(3):172-180.
-
(2007)
J Energy Eng
, vol.133
, Issue.3
, pp. 172-180
-
-
Duran, M.J.1
Cros, D.2
Riquelme, J.3
-
28
-
-
35549001332
-
Short term wind speed forecasting for wind turbine applications using linear prediction method
-
Riahy G.H., Abedi M. Short term wind speed forecasting for wind turbine applications using linear prediction method. Renewable Energy 2008, 33(1):35-41.
-
(2008)
Renewable Energy
, vol.33
, Issue.1
, pp. 35-41
-
-
Riahy, G.H.1
Abedi, M.2
-
29
-
-
58949103845
-
Day-ahead wind speed forecasting using f-ARIMA models
-
Kavasseri R.G., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy 2009, 34(5):1388-1393.
-
(2009)
Renewable Energy
, vol.34
, Issue.5
, pp. 1388-1393
-
-
Kavasseri, R.G.1
Seetharaman, K.2
-
30
-
-
78650562310
-
ARMA based approaches for forecasting the tuple of wind speed and direction
-
Erdem E., Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011, 88(4):1405-1414.
-
(2011)
Appl Energy
, vol.88
, Issue.4
, pp. 1405-1414
-
-
Erdem, E.1
Shi, J.2
-
31
-
-
78650561071
-
Error analysis of short term wind power prediction models
-
De Giorgi M.G., Ficarella A., Tarantino M. Error analysis of short term wind power prediction models. Appl Energy 2011, 88(4):1298-1311.
-
(2011)
Appl Energy
, vol.88
, Issue.4
, pp. 1298-1311
-
-
De Giorgi, M.G.1
Ficarella, A.2
Tarantino, M.3
-
32
-
-
78650944534
-
Fine tuning support vector machines for short-term wind speed forecasting
-
Zhou J., Shi J., Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 2011, 52(4):1990-1998.
-
(2011)
Energy Convers Manage
, vol.52
, Issue.4
, pp. 1990-1998
-
-
Zhou, J.1
Shi, J.2
Li, G.3
-
33
-
-
84949681323
-
A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
-
Wang J., Hu J. A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 2015, 93:41-56.
-
(2015)
Energy
, vol.93
, pp. 41-56
-
-
Wang, J.1
Hu, J.2
-
34
-
-
84929146225
-
Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
-
Liu H., Tian H., Li Y. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers Manage 2015, 100:16-22.
-
(2015)
Energy Convers Manage
, vol.100
, pp. 16-22
-
-
Liu, H.1
Tian, H.2
Li, Y.3
-
35
-
-
84897459902
-
A review of combined approaches for prediction of short-term wind speed and power
-
Tascikaraoglu A., Uzunoglu M. A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 2014, 34:243-254.
-
(2014)
Renew Sustain Energy Rev
, vol.34
, pp. 243-254
-
-
Tascikaraoglu, A.1
Uzunoglu, M.2
-
36
-
-
84862213628
-
Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
-
Liu H., Tian H., Li Y. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energy 2012, 98:415-424.
-
(2012)
Appl Energy
, vol.98
, pp. 415-424
-
-
Liu, H.1
Tian, H.2
Li, Y.3
-
37
-
-
84866534364
-
A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power
-
Zhang Q., Lai K.K., Niu D., et al. A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power. Energies 2012, 5(9):3329-3346.
-
(2012)
Energies
, vol.5
, Issue.9
, pp. 3329-3346
-
-
Zhang, Q.1
Lai, K.K.2
Niu, D.3
-
38
-
-
84945934357
-
Dynamic optimal combination model considering adaptive exponential for ultra short term wind power prediction
-
Lin Ye, Qianwen Zhu, Yongning Zhao Dynamic optimal combination model considering adaptive exponential for ultra short term wind power prediction. Automat Electric Power Syst 2015, 39(20):12-18. 10.7500/AEPS20141128002.
-
(2015)
Automat Electric Power Syst
, vol.39
, Issue.20
, pp. 12-18
-
-
Lin, Y.1
Qianwen, Z.2
Yongning, Z.3
-
39
-
-
84906911087
-
Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
-
De Giorgi M.G., Campilongo S., Ficarella A., et al. Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 2014, 7(8):5251-5272.
-
(2014)
Energies
, vol.7
, Issue.8
, pp. 5251-5272
-
-
De Giorgi, M.G.1
Campilongo, S.2
Ficarella, A.3
-
40
-
-
84859094795
-
Short-term wind power prediction using a wavelet support vector machine
-
Zeng J., Qiao W. Short-term wind power prediction using a wavelet support vector machine. Sust Energy, IEEE Trans 2012, 3(2):255-264.
-
(2012)
Sust Energy, IEEE Trans
, vol.3
, Issue.2
, pp. 255-264
-
-
Zeng, J.1
Qiao, W.2
-
41
-
-
84875115854
-
Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
-
Liu H., Tian H., Pan D., et al. Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl Energy 2013, 107:191-208.
-
(2013)
Appl Energy
, vol.107
, pp. 191-208
-
-
Liu, H.1
Tian, H.2
Pan, D.3
-
42
-
-
79961127156
-
Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
-
Guo Z., Zhao W., Lu H., et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012, 37(1):241-249.
-
(2012)
Renewable Energy
, vol.37
, Issue.1
, pp. 241-249
-
-
Guo, Z.1
Zhao, W.2
Lu, H.3
-
43
-
-
84939789758
-
Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
-
Liu H., Tian H., Liang X., et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl Energy 2015, 157:183-194.
-
(2015)
Appl Energy
, vol.157
, pp. 183-194
-
-
Liu, H.1
Tian, H.2
Liang, X.3
-
44
-
-
82055184071
-
Combined model based on EMD-SVM for short-term wind power prediction
-
Lin Y.E., Peng L.I.U. Combined model based on EMD-SVM for short-term wind power prediction. Proc CSEE 2011, 31(31):102-108.
-
(2011)
Proc CSEE
, vol.31
, Issue.31
, pp. 102-108
-
-
Lin, Y.E.1
Peng, L.I.U.2
-
45
-
-
77954315872
-
Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
-
Cadenas E., Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renewable Energy 2010, 35(12):2732-2738.
-
(2010)
Renewable Energy
, vol.35
, Issue.12
, pp. 2732-2738
-
-
Cadenas, E.1
Rivera, W.2
-
46
-
-
84860776112
-
Short-term wind power prediction based on combined grey-markov model[C]
-
IEEE
-
Sheng C., Lin Y., Gengwu Z., et al. Short-term wind power prediction based on combined grey-markov model[C]. Advanced Power System Automation and Protection (APAP), 2011 International Conference on. 2011, vol. 3:1705-1711. IEEE.
-
(2011)
Advanced Power System Automation and Protection (APAP), 2011 International Conference on.
, vol.3
, pp. 1705-1711
-
-
Sheng, C.1
Lin, Y.2
Gengwu, Z.3
-
47
-
-
84858289782
-
Evolutive design of ARMA and ANN models for time series forecasting
-
Flores J.J., Graff M., Rodriguez H. Evolutive design of ARMA and ANN models for time series forecasting. Renewable Energy 2012, 44:225-230.
-
(2012)
Renewable Energy
, vol.44
, pp. 225-230
-
-
Flores, J.J.1
Graff, M.2
Rodriguez, H.3
-
48
-
-
84958154004
-
Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
-
Meng A., Ge J., Yin H., et al. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 2016, 114:75-88.
-
(2016)
Energy Convers Manage
, vol.114
, pp. 75-88
-
-
Meng, A.1
Ge, J.2
Yin, H.3
-
49
-
-
84908376968
-
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
-
Osório G.J., Matias J.C.O., Catalão J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renewable Energy 2015, 75:301-307.
-
(2015)
Renewable Energy
, vol.75
, pp. 301-307
-
-
Osório, G.J.1
Matias, J.C.O.2
Catalão, J.P.S.3
-
50
-
-
84946594359
-
An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
-
Zhao J., Guo Z.H., Su Z.Y., et al. An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl Energy 2016, 162:808-826.
-
(2016)
Appl Energy
, vol.162
, pp. 808-826
-
-
Zhao, J.1
Guo, Z.H.2
Su, Z.Y.3
-
51
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
52
-
-
67650355939
-
Introduction to derivative-free optimization
-
Siam
-
Conn AR, Scheinberg K, Vicente LN. Introduction to derivative-free optimization. Siam, 2009.
-
(2009)
-
-
Conn, A.R.1
Scheinberg, K.2
Vicente, L.N.3
-
53
-
-
0003408774
-
Matlab Optimization Toolbox User's Guide
-
Version 5. Math Works, Incorporated
-
MathWorks, Inc., Matlab Optimization Toolbox User's Guide, Version 5. Math Works, Incorporated, 2010.
-
(2010)
-
-
-
55
-
-
79960287766
-
A comprehensive error evaluation method for short-term wind power prediction
-
Man Xu, Ying Qiao, Zongxiang Lu A comprehensive error evaluation method for short-term wind power prediction. Automat Electric Power Syst 2011, 35(12):20-26.
-
(2011)
Automat Electric Power Syst
, vol.35
, Issue.12
, pp. 20-26
-
-
Man, X.1
Ying, Q.2
Zongxiang, L.3
-
56
-
-
84929332562
-
Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate
-
De Giorgi M.G., Congedo P.M., Malvoni M., et al. Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate. Energy Convers Manage 2015, 100:117-130.
-
(2015)
Energy Convers Manage
, vol.100
, pp. 117-130
-
-
De Giorgi, M.G.1
Congedo, P.M.2
Malvoni, M.3
-
57
-
-
19144369129
-
On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors
-
Lange M. On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors. J SolEnergy Eng 2005, 127(2):177-184.
-
(2005)
J SolEnergy Eng
, vol.127
, Issue.2
, pp. 177-184
-
-
Lange, M.1
-
58
-
-
84973512431
-
-
http://www.nrel.gov/electricity/transmission/eastern_wind_methodology.html.
-
-
-
|