메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 414-418

Short-term wind power forecasting based on T-S fuzzy model

Author keywords

Fuzzy c means (FCM); Recursive least squares method (RLS); T S fuzzy model; Wind power forecasting

Indexed keywords

CLUSTERING ALGORITHMS; FORECASTING; FUZZY SYSTEMS; LEAST SQUARES APPROXIMATIONS; SIGNAL PROCESSING; SUPPORT VECTOR MACHINES; WIND; WIND EFFECTS; WIND POWER;

EID: 85009944221     PISSN: 21574839     EISSN: 21574847     Source Type: Conference Proceeding    
DOI: 10.1109/APPEEC.2016.7779537     Document Type: Conference Paper
Times cited : (17)

References (14)
  • 1
    • 84921916753 scopus 로고    scopus 로고
    • A self-adaptive hybrid approach for wind speed forecasting
    • Jun
    • J. Wang, J. Hu, K. Ma, Y. Zhang, "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, vol. 78, pp. 374-385, Jun. 2015
    • (2015) Renewable Energy , vol.78 , pp. 374-385
    • Wang, J.1    Hu, J.2    Ma, K.3    Zhang, Y.4
  • 2
    • 84907274874 scopus 로고    scopus 로고
    • SVM with improved grid search and its application to wind power prediction
    • Jul.
    • M. Li, "SVM with improved grid search and its application to wind power prediction," Machine Learning and Cybernetics (iCMLC), vol. 2, pp. 603-609, Jul. 2013
    • (2013) Machine Learning and Cybernetics (ICMLC) , vol.2 , pp. 603-609
    • Li, M.1
  • 3
    • 84940390709 scopus 로고    scopus 로고
    • Reviews on uncertainty analysis of wind power forecasting
    • Dec.
    • J. Yan, "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, vol. 52, pp. 1322-1330, Dec. 2015
    • (2015) Renewable and Sustainable Energy Reviews , vol.52 , pp. 1322-1330
    • Yan, J.1
  • 4
    • 84944909341 scopus 로고    scopus 로고
    • Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
    • Mar.
    • Z. Men, E. Yee, F.S. Lien, D. Wen, Y. Chen, "Short-term wind speed and power forecasting using an ensemble of mixture density neural networks," Renewable Energy, vol. 87, pp. 203-211, Mar. 2016
    • (2016) Renewable Energy , vol.87 , pp. 203-211
    • Men, Z.1    Yee, E.2    Lien, F.S.3    Wen, D.4    Chen, Y.5
  • 5
    • 84964322304 scopus 로고    scopus 로고
    • Short-term wind power combined forecasting based on error forecast correction
    • July.
    • Z. Liang, J. Liang, C. Wang, X. Dong, X. Miao, "Short-term wind power combined forecasting based on error forecast correction," Energy Conversion and Management, vol. 119, pp. 215-226, July. 2016
    • (2016) Energy Conversion and Management , vol.119 , pp. 215-226
    • Liang, Z.1    Liang, J.2    Wang, C.3    Dong, X.4    Miao, X.5
  • 6
    • 84908425965 scopus 로고    scopus 로고
    • Wind power forecast using wavelet neural network trained by improved clonal selection algorithm
    • Jan.
    • H. Chitsaz, N. Amjady, H. Zareipour, "Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm," Energy Conversion and Management, vol. 89, pp. 588-598, Jan. 2015
    • (2015) Energy Conversion and Management , vol.89 , pp. 588-598
    • Chitsaz, H.1    Amjady, N.2    Zareipour, H.3
  • 7
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evol.utionary particle swarm optimization, wavelet transform and mutual information
    • Mar.
    • G. J. Osorio, J. C. O. Matias, and J. P. S. Catalllo, "Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evol.utionary particle swarm optimization, wavelet transform and mutual information," Renewable Energy, vol. 75, pp. 301-307, Mar. 2015
    • (2015) Renewable Energy , vol.75 , pp. 301-307
    • Osorio, G.J.1    Matias, J.C.O.2    Catalllo, J.P.S.3
  • 8
    • 84896913240 scopus 로고    scopus 로고
    • Two methods of correlation coefficient on compositional data
    • May.
    • W. Long, and Q. Wang, "Two Methods of Correlation Coefficient on Compositional Data," Procedia Computer Science, vol. 18, pp. 1757-1763, May. 2013
    • (2013) Procedia Computer Science , vol.18 , pp. 1757-1763
    • Long, W.1    Wang, Q.2
  • 9
    • 84884847107 scopus 로고    scopus 로고
    • Statistical distribution for wind power forecast error and its application to determine optimal size of energy storage system
    • Sept.
    • J Wu, B Zhang, H Li, Z Li, Y Chen, X Miao, "Statistical distribution for wind power forecast error and its application to determine optimal size of energy storage system," international Journal of Electrical Power & Energy Systems, vol. 55, pp. 100-107, Sept. 2013
    • (2013) Ternational Journal of Electrical Power & Energy Systems , vol.55 , pp. 100-107
    • Wu, J.1    Zhang, B.2    Li, H.3    Li, Z.4    Chen, Y.5    Miao, X.6
  • 11
    • 84903119035 scopus 로고    scopus 로고
    • A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
    • Jan.
    • A. U. Haque, M. H. Nehrir, P. MandaI, "A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting," iEEE Trans. Power Systems, vol. 29, no. 4, pp. 1663-1672, Jan. 2014
    • (2014) IEEE Trans. Power Systems , vol.29 , Issue.4 , pp. 1663-1672
    • Haque, A.U.1    Nehrir, M.H.2    MandaI, P.3
  • 14
    • 84887788957 scopus 로고    scopus 로고
    • Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer percept ron artificial neural network model with improved simplified swarm optimization
    • Feb.
    • C. Wei and M. Yuan, "Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer percept ron artificial neural network model with improved simplified swarm optimization," international Journal of Electrical Power & Energy Systems, vol. 55, pp. 741-748, Feb. 2014.
    • (2014) Ternational Journal of Electrical Power & Energy Systems , vol.55 , pp. 741-748
    • Wei, C.1    Yuan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.