메뉴 건너뛰기




Volumn 9, Issue 8, 2016, Pages

A least squares support vector machine optimized by cloud-based evolutionary algorithm for wind power generation prediction

Author keywords

Cloud based evolutionary algorithm; Least squares support vector machine; Paired sample t test; Two way comparison; Wind power generation prediction

Indexed keywords

ELECTRIC POWER GENERATION; EVOLUTIONARY ALGORITHMS; SUPPORT VECTOR MACHINES; WIND POWER;

EID: 84982973119     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en9080585     Document Type: Article
Times cited : (23)

References (39)
  • 1
    • 84937875109 scopus 로고    scopus 로고
    • Short-term wind speed prediction based on robust kalman filtering: An experimental comparison
    • Zuluaga, C.D.; Álvarez, M.A.; Giraldo, E. Short-term wind speed prediction based on robust kalman filtering: An experimental comparison. Appl. Energy 2015, 156, 321-330.
    • (2015) Appl. Energy , vol.156 , pp. 321-330
    • Zuluaga, C.D.1    Álvarez, M.A.2    Giraldo, E.3
  • 2
    • 84923368046 scopus 로고    scopus 로고
    • Recursive wind speed forecasting based on hammerstein auto-regressive model
    • Ait Maatallah, O.; Achuthan, A.; Janoyan, K.; Marzocca, P. Recursive wind speed forecasting based on hammerstein auto-regressive model. Appl. Energy 2015, 145, 191-197.
    • (2015) Appl Energy , vol.145 , pp. 191-197
    • Ait Maatallah, O.1    Achuthan, A.2    Janoyan, K.3    Marzocca, P.4
  • 3
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1-8.
    • (2012) Renew. Energy , vol.37 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuglia, A.3    McKeogh, E.J.4
  • 5
    • 84929146225 scopus 로고    scopus 로고
    • Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
    • Liu, H.; Tian, H.Q.; Li, Y.F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers. Manag. 2015, 100, 16-22.
    • (2015) Energy Convers. Manag , vol.100 , pp. 16-22
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 6
    • 84920167958 scopus 로고    scopus 로고
    • Comparison of four adaboost algorithm based artificial neural networks in wind speed predictions
    • Liu, H.; Tian, H.Q.; Li, Y.F.; Zhang, L. Comparison of four adaboost algorithm based artificial neural networks in wind speed predictions. Energy Convers. Manag. 2015, 92, 67-81.
    • (2015) Energy Convers. Manag , vol.92 , pp. 67-81
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3    Zhang, L.4
  • 7
    • 84864827118 scopus 로고    scopus 로고
    • Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output
    • Cassola, F.; Burlando, M. Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output. Appl. Energy 2012, 99, 154-166.
    • (2012) Appl. Energy , vol.99 , pp. 154-166
    • Cassola, F.1    Burlando, M.2
  • 8
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • Ma, L.; Luan, S.; Jiang, C.; Liu, H.; Zhang, Y. A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 2009, 13, 915-920.
    • (2009) Renew. Sustain. Energy Rev , vol.13 , pp. 915-920
    • Ma, L.1    Luan, S.2    Jiang, C.3    Liu, H.4    Zhang, Y.5
  • 10
    • 33846310789 scopus 로고    scopus 로고
    • Time series analysis of wind speed using var and the generalized impulse response technique
    • Ewing, B.T.; Kruse, J.B.; Schroeder, J.L.; Smith, D.A. Time series analysis of wind speed using var and the generalized impulse response technique. J. Wind Eng. Ind. Aerodyn. 2007, 95, 209-219.
    • (2007) J. Wind Eng. Ind. Aerodyn , vol.95 , pp. 209-219
    • Ewing, B.T.1    Kruse, J.B.2    Schroeder, J.L.3    Smith, D.A.4
  • 11
    • 0021866117 scopus 로고
    • Short-term wind prediction using kalman filters
    • Bossanyi, E. Short-term wind prediction using kalman filters. Wind Eng. 1985, 9, 1-8.
    • (1985) Wind Eng , vol.9 , pp. 1-8
    • Bossanyi, E.1
  • 12
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • Liu, H.; Tian, H.Q.; Chen, C.; Li, Y.F. A hybrid statistical method to predict wind speed and wind power. Renew. Energy 2010, 35, 1857-1861.
    • (2010) Renew. Energy , vol.35 , pp. 1857-1861
    • Liu, H.1    Tian, H.Q.2    Chen, C.3    Li, Y.F.4
  • 13
    • 78650562310 scopus 로고    scopus 로고
    • Arma based approaches for forecasting the tuple of wind speed and direction
    • Erdem, E.; Shi, J. Arma based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405-1414.
    • (2011) Appl. Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 14
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed
    • Liu, H.P.; Erdem, E.; Shi, J. Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl. Energy 2011, 88, 724-732.
    • (2011) Appl. Energy , vol.88 , pp. 724-732
    • Liu, H.P.1    Erdem, E.2    Shi, J.3
  • 15
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of two ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy 2012, 98, 415-424.
    • (2012) Appl. Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 16
    • 84865557377 scopus 로고    scopus 로고
    • Very short-term wind speed forecasting with bayesian structural break model
    • Jiang, Y.; Song, Z.; Kusiak, A. Very short-term wind speed forecasting with bayesian structural break model. Renew. Energy 2013, 50, 637-647.
    • (2013) Renew. Energy , vol.50 , pp. 637-647
    • Jiang, Y.1    Song, Z.2    Kusiak, A.3
  • 17
    • 84939158416 scopus 로고    scopus 로고
    • Wind speed forecasting based on FEEMD and LSSVM optimized by the bat algorithm
    • Sun, W.; Liu, M.; Liang, Y. Wind speed forecasting based on FEEMD and LSSVM optimized by the bat algorithm. Energies 2015, 8, 6585-6607.
    • (2015) Energies , vol.8 , pp. 6585-6607
    • Sun, W.1    Liu, M.2    Liang, Y.3
  • 18
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared, M.; Rastegar, H.; Kojabadi, H.M. A new strategy for wind speed forecasting using artificial intelligent methods. Renew. Energy 2009, 34, 845-848.
    • (2009) Renew. Energy , vol.34 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 19
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313-2320.
    • (2010) Appl. Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 20
    • 84921370884 scopus 로고    scopus 로고
    • Multistep prediction of physiological tremor based on machine learning for robotics assisted microsurgery
    • Tatinati, S.; Veluvolu, K.C.; Ang,W.T. Multistep prediction of physiological tremor based on machine learning for robotics assisted microsurgery. IEEE Trans. Cybern. 2015, 45, 328-339.
    • (2015) IEEE Trans. Cybern , vol.45 , pp. 328-339
    • Tatinati, S.1    Veluvolu, K.C.2    Ang, W.T.3
  • 21
    • 59749093654 scopus 로고    scopus 로고
    • Evolving least squares support vector machines for stock market trend mining
    • Yu, L.; Chen, H.; Wang, S.; Lai, K.K. Evolving least squares support vector machines for stock market trend mining. IEEE Trans. Evolut. Comput. 2009, 13, 87-102.
    • (2009) IEEE Trans. Evolut. Comput , vol.13 , pp. 87-102
    • Yu, L.1    Chen, H.2    Wang, S.3    Lai, K.K.4
  • 22
    • 33646352206 scopus 로고    scopus 로고
    • Very short-term wind forecasting for tasmanian power generation
    • Potter, C.W.; Negnevitsky, M. Very short-term wind forecasting for tasmanian power generation. IEEE Trans. Power Syst. 2006, 21, 965-972.
    • (2006) IEEE Trans. Power Syst , vol.21 , pp. 965-972
    • Potter, C.W.1    Negnevitsky, M.2
  • 24
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • Pinson, P.; Kariniotakis, G. Conditional prediction intervals of wind power generation. IEEE Trans. Power Syst. 2010, 25, 1845-1856.
    • (2010) IEEE Trans. Power Syst , vol.25 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 25
    • 78649936397 scopus 로고    scopus 로고
    • Short-horizon prediction of wind power: A data-driven approach
    • Kusiak, A.; Zhang, Z. Short-horizon prediction of wind power: A data-driven approach. IEEE Trans. Energy Convers. 2010, 25, 1112-1122.
    • (2010) IEEE Trans. Energy Convers , vol.25 , pp. 1112-1122
    • Kusiak, A.1    Zhang, Z.2
  • 26
    • 79952183962 scopus 로고    scopus 로고
    • A corrected hybrid approach for wind speed prediction in hexi corridor of China
    • Guo, Z.H.; Zhao, J.; Zhang, W.Y.; Wang, J.Z. A corrected hybrid approach for wind speed prediction in hexi corridor of China. Energy 2011, 36, 1668-1679.
    • (2011) Energy , vol.36 , pp. 1668-1679
    • Guo, Z.H.1    Zhao, J.2    Zhang, W.Y.3    Wang, J.Z.4
  • 27
    • 84906911087 scopus 로고    scopus 로고
    • Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
    • De Giorgi, M.; Campilongo, S.; Ficarella, A.; Congedo, P. Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 2014, 7, 5251-5272.
    • (2014) Energies , vol.7 , pp. 5251-5272
    • De Giorgi, M.1    Campilongo, S.2    Ficarella, A.3    Congedo, P.4
  • 28
    • 84931262272 scopus 로고    scopus 로고
    • Short-term wind power prediction based on LSSVM-GSA model
    • Yuan, X.; Chen, C.; Yuan, Y.; Huang, Y.; Tan, Q. Short-term wind power prediction based on LSSVM-GSA model. Energy Convers. Manag. 2015, 101, 393-401.
    • (2015) Energy Convers. Manag , vol.101 , pp. 393-401
    • Yuan, X.1    Chen, C.2    Yuan, Y.3    Huang, Y.4    Tan, Q.5
  • 29
    • 84858724450 scopus 로고    scopus 로고
    • The short-term wind speed forecast analysis based on the PSO-LSSVM predict model
    • Sun, B.; Yao, H.-T. The short-term wind speed forecast analysis based on the PSO-LSSVM predict model. Power Syst. Prot. Control 2012, 40, 85-89.
    • (2012) Power Syst. Prot. Control , vol.40 , pp. 85-89
    • Sun, B.1    Yao, H.-T.2
  • 30
    • 84922362244 scopus 로고    scopus 로고
    • The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in China
    • Wang, J.Z.; Wang, Y.; Jiang, P. The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in China. Appl. Energy 2015, 143, 472-488.
    • (2015) Appl. Energy , vol.143 , pp. 472-488
    • Wang, J.Z.1    Wang, Y.2    Jiang, P.3
  • 31
    • 51949113021 scopus 로고    scopus 로고
    • Ga based optimized LSSVM forecasting of short term electricity price in competitive power markets
    • In Proceedings of 2008 3rd IEEE Conference on Industrial Electronics and Applications, Siem Reap, Cambodia, 18-20 June
    • Mahjoob, M.J.; Abdollahzade, M.; Zarringhalam, R. Ga based optimized LSSVM forecasting of short term electricity price in competitive power markets. In Proceedings of 2008 3rd IEEE Conference on Industrial Electronics and Applications, Siem Reap, Cambodia, 18-20 June 2017; pp. 73-78.
    • (2017) , pp. 73-78
    • Mahjoob, M.J.1    Abdollahzade, M.2    Zarringhalam, R.3
  • 32
    • 84922715479 scopus 로고    scopus 로고
    • Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach
    • Jung, H.C.; Kim, J.S.; Heo, H. Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach. Energy Build. 2015, 90, 76-84.
    • (2015) Energy Build , vol.90 , pp. 76-84
    • Jung, H.C.1    Kim, J.S.2    Heo, H.3
  • 33
    • 48549095203 scopus 로고    scopus 로고
    • An evolutionary algorithm based on cloud model
    • Zhang, G.W.; He, R.; Liu, Y.; Li, D.Y.; Chen, G.S. An evolutionary algorithm based on cloud model. Chin. J. Comput. 2008, 31, 1082-1090.
    • (2008) Chin. J. Comput , vol.31 , pp. 1082-1090
    • Zhang, G.W.1    He, R.2    Liu, Y.3    Li, D.Y.4    Chen, G.S.5
  • 34
    • 11444258005 scopus 로고    scopus 로고
    • Artificial intelligence with uncertainty
    • Li, D.Y.; Liu, C.Y.; Du, Y.; Han, X. Artificial intelligence with uncertainty. J. Soft. 2004, 15, 1583-1594.
    • (2004) J. Soft , vol.15 , pp. 1583-1594
    • Li, D.Y.1    Liu, C.Y.2    Du, Y.3    Han, X.4
  • 35
    • 54149110093 scopus 로고    scopus 로고
    • Models for monitoring wind farm power
    • Kusiak, A.; Zheng, H.; Song, Z. Models for monitoring wind farm power. Renew. Energy 2009, 34, 583-590.
    • (2009) Renew. Energy , vol.34 , pp. 583-590
    • Kusiak, A.1    Zheng, H.2    Song, Z.3
  • 36
    • 84982869957 scopus 로고    scopus 로고
    • Abnormal data identification and treatment in spatial electric load forecasting
    • Xiao, B.; Xu, X.; Song, K.; Bai, Y.; Li, J.F. Abnormal data identification and treatment in spatial electric load forecasting. J. Northeast Dianli Univ. 2013, 33, 45-50.
    • (2013) J. Northeast Dianli Univ , vol.33 , pp. 45-50
    • Xiao, B.1    Xu, X.2    Song, K.3    Bai, Y.4    Li, J.F.5
  • 37
    • 0034224557 scopus 로고    scopus 로고
    • Recurrent least squares support vector machines. IEEE Trans. Circuits Syst
    • Suykens, J.A.K.; Vandewalle, J. Recurrent least squares support vector machines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 1109-1114.
    • (2000) I Fundam. Theory Appl , vol.47 , pp. 1109-1114
    • Suykens, J.A.K.1    Vandewalle, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.