메뉴 건너뛰기




Volumn 129, Issue , 2017, Pages 216-227

A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community

Author keywords

Combined forecasting; Photovoltaic generation; Smart community; Support vector machine; Wind power

Indexed keywords

ELECTRIC POWER SYSTEM ECONOMICS; ELECTRIC POWER TRANSMISSION NETWORKS; PHOTOVOLTAIC CELLS; SMART CITY; SUPPORT VECTOR MACHINES; WEATHER FORECASTING; WIND POWER;

EID: 85018550165     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2017.04.032     Document Type: Article
Times cited : (46)

References (25)
  • 1
    • 85027930799 scopus 로고    scopus 로고
    • Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids
    • March
    • [1] Saez, D., Avila, F., Olivares, D., Canizares, C., Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids. IEEE Trans Smart Grid 6:2 (March 2015), 548–556.
    • (2015) IEEE Trans Smart Grid , vol.6 , Issue.2 , pp. 548-556
    • Saez, D.1    Avila, F.2    Olivares, D.3    Canizares, C.4
  • 2
    • 84946021085 scopus 로고    scopus 로고
    • A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China
    • [2] Wang, J.Z., Hua, J.M., A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China. Energy 39 (Nov. 2015), 556–572.
    • (2015) Energy , vol.39 , pp. 556-572
    • Wang, J.Z.1    Hua, J.M.2
  • 3
    • 84928429252 scopus 로고    scopus 로고
    • Short-term solar irradiation forecasting based on dynamic harmonic regression original Research article
    • May
    • [3] Trapero, J.R., Kourentzes, N., Martin, A., Short-term solar irradiation forecasting based on dynamic harmonic regression original Research article. Energy 84 (May 2015), 289–295.
    • (2015) Energy , vol.84 , pp. 289-295
    • Trapero, J.R.1    Kourentzes, N.2    Martin, A.3
  • 4
    • 77956084111 scopus 로고    scopus 로고
    • Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy)
    • [4] Ouammi, A., Dagdougui, H., Sacile, R., Mimet, A., Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy). Renew Sustain Energy Rev 14:7 (Sep. 2010), 1959–1968.
    • (2010) Renew Sustain Energy Rev , vol.14 , Issue.7 , pp. 1959-1968
    • Ouammi, A.1    Dagdougui, H.2    Sacile, R.3    Mimet, A.4
  • 5
    • 84908152186 scopus 로고    scopus 로고
    • A new hybrid evolutionary based RBF networks method for forecasting time series: a case study of forecasting emergency supply demand time series
    • [5] Mohammadi, R., Fatemi Ghomi, S.M.T., Zeinali, F., A new hybrid evolutionary based RBF networks method for forecasting time series: a case study of forecasting emergency supply demand time series. Eng Appl Artif Intell 36 (Nov. 2014), 204–214.
    • (2014) Eng Appl Artif Intell , vol.36 , pp. 204-214
    • Mohammadi, R.1    Fatemi Ghomi, S.M.T.2    Zeinali, F.3
  • 6
    • 84940040929 scopus 로고    scopus 로고
    • Kalman filter-based method for online sequential extreme learning machine for regression problems
    • [6] Nobrega, J.P., Oliveira, A.L.I., Kalman filter-based method for online sequential extreme learning machine for regression problems. Eng Appl Artif Intell 44 (Sep. 2015), 101–110.
    • (2015) Eng Appl Artif Intell , vol.44 , pp. 101-110
    • Nobrega, J.P.1    Oliveira, A.L.I.2
  • 7
    • 84916879761 scopus 로고    scopus 로고
    • Short term load forecast using fuzzy logic and wavelet transform integrated generalized neural network
    • [7] Chaturvedi, D.K., Sinha, A.P., Malik, O.P., Short term load forecast using fuzzy logic and wavelet transform integrated generalized neural network. Int J Electr Power & Energy Syst 67 (May. 2015), 230–237.
    • (2015) Int J Electr Power & Energy Syst , vol.67 , pp. 230-237
    • Chaturvedi, D.K.1    Sinha, A.P.2    Malik, O.P.3
  • 8
    • 84922351856 scopus 로고    scopus 로고
    • A new method for short-term load forecasting based on fractal interpretation and wavelet analysis
    • July
    • [8] Zhai, M.Y., A new method for short-term load forecasting based on fractal interpretation and wavelet analysis. Int J Electr Power & Energy Syst 69 (July 2015), 241–245.
    • (2015) Int J Electr Power & Energy Syst , vol.69 , pp. 241-245
    • Zhai, M.Y.1
  • 9
    • 84892569845 scopus 로고    scopus 로고
    • Short-term wind power ensemble prediction based on Gaussian processes and neural networks
    • [9] Lee, Duehee, Baldick, R., Short-term wind power ensemble prediction based on Gaussian processes and neural networks. IEEE Trans Smart Grid 5:1 (Jan. 2014), 501–510.
    • (2014) IEEE Trans Smart Grid , vol.5 , Issue.1 , pp. 501-510
    • Lee, D.1    Baldick, R.2
  • 10
    • 33750297514 scopus 로고    scopus 로고
    • Short-term ANN load forecasting from limited data using generalization learning strategies
    • [10] Zeke, S.H., Chana, H.W., Nganb, A.B., Radb, A.K., Davidb, Kasabova, N., Short-term ANN load forecasting from limited data using generalization learning strategies. Neurocomputing 70 (2006), 409–419.
    • (2006) Neurocomputing , vol.70 , pp. 409-419
    • Zeke, S.H.1    Chana, H.W.2    Nganb, A.B.3    Radb, A.K.4    Davidb5    Kasabova, N.6
  • 11
    • 9244240793 scopus 로고    scopus 로고
    • Load forecasting using support vector machines: a study on EUNITE competition 2001
    • [11] Chen, B.J., Chang, M.W., Lin, C.J., Load forecasting using support vector machines: a study on EUNITE competition 2001. IEEE Trans Power Syst 19:4 (Nov. 2004), 1821–1830.
    • (2004) IEEE Trans Power Syst , vol.19 , Issue.4 , pp. 1821-1830
    • Chen, B.J.1    Chang, M.W.2    Lin, C.J.3
  • 12
    • 77955516396 scopus 로고    scopus 로고
    • Finding optimal model parameters by deterministic and annealed focused grid search
    • [12] Jiménez, Á.B., Lázaro, J.L., Dorronsoro, J.R., Finding optimal model parameters by deterministic and annealed focused grid search. Neurocomputing 72:1 (Aug. 2008), 2824–2832.
    • (2008) Neurocomputing , vol.72 , Issue.1 , pp. 2824-2832
    • Jiménez, Á.B.1    Lázaro, J.L.2    Dorronsoro, J.R.3
  • 13
    • 84928987064 scopus 로고    scopus 로고
    • Towards reactive power dispatch within a wind farm using hybrid PSO
    • [13] Kumar, A., Tsvetkov, P.V., Towards reactive power dispatch within a wind farm using hybrid PSO. Ann Nucl Energy 85 (Nov. 2015), 27–35.
    • (2015) Ann Nucl Energy , vol.85 , pp. 27-35
    • Kumar, A.1    Tsvetkov, P.V.2
  • 14
    • 84922341864 scopus 로고    scopus 로고
    • Towards reactive power dispatch within a wind farm using hybrid PSO
    • [14] Kanna, B., Singh, S.N., Towards reactive power dispatch within a wind farm using hybrid PSO. Int J Electr Power & Energy Syst 69 (Jul. 2015), 232–240.
    • (2015) Int J Electr Power & Energy Syst , vol.69 , pp. 232-240
    • Kanna, B.1    Singh, S.N.2
  • 15
    • 84871719024 scopus 로고    scopus 로고
    • An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming original research article
    • January
    • [15] Moradi, MoH., Hajinazari, M., Jamasb, S., Paripour, M., An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming original research article. Energy 49 (January 2013), 86–101.
    • (2013) Energy , vol.49 , pp. 86-101
    • Moradi, M.1    Hajinazari, M.2    Jamasb, S.3    Paripour, M.4
  • 16
    • 84949681323 scopus 로고    scopus 로고
    • A robust combination approach for short-term wind speed forecasting and analysis – combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (Gaussian process regression) model
    • [16] Wang, J.Z., Hua, J.M., A robust combination approach for short-term wind speed forecasting and analysis – combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (Gaussian process regression) model. Energy 45 (Aug.2015), 41–56.
    • (2015) Energy , vol.45 , pp. 41-56
    • Wang, J.Z.1    Hua, J.M.2
  • 17
    • 84918801543 scopus 로고    scopus 로고
    • Hybridization of seasonal chaotic cloud simulated annealing algorithm in a SVR-based load forecasting model
    • [17] Geng, J., Huang, M.L., Li, M.W., Hong, W.C., Hybridization of seasonal chaotic cloud simulated annealing algorithm in a SVR-based load forecasting model. Neurocomputing 151 (Mar. 2015), 1362–1373.
    • (2015) Neurocomputing , vol.151 , pp. 1362-1373
    • Geng, J.1    Huang, M.L.2    Li, M.W.3    Hong, W.C.4
  • 18
    • 84896951924 scopus 로고    scopus 로고
    • Hybrid of ARIMA and SVMs for short-term load ForecastingOriginal Research article
    • [18] Nie, H.Z., Liu, G.H., Liu, X.M., Wang, Y., Hybrid of ARIMA and SVMs for short-term load ForecastingOriginal Research article. Energy Proced. 16 (Jan, 2012), 1455–1460.
    • (2012) Energy Proced. , vol.16 , pp. 1455-1460
    • Nie, H.Z.1    Liu, G.H.2    Liu, X.M.3    Wang, Y.4
  • 19
    • 84956634384 scopus 로고    scopus 로고
    • Design of experiments and focused grid search for neural network parameter optimization
    • [19] Pontesa, F.J., Amorimb, G.F., Balestrassib, P.P., Paivab, A.P., Ferreirad, J.R., Design of experiments and focused grid search for neural network parameter optimization. Neurocomputing 186 (Jan. 2016), 22–34.
    • (2016) Neurocomputing , vol.186 , pp. 22-34
    • Pontesa, F.J.1    Amorimb, G.F.2    Balestrassib, P.P.3    Paivab, A.P.4    Ferreirad, J.R.5
  • 20
    • 84947252235 scopus 로고    scopus 로고
    • A hybrid PSO-GA algorithm for constrained optimization problems
    • [20] Garg, H., A hybrid PSO-GA algorithm for constrained optimization problems. Article Appl Math Comput 274 (Feb. 2016), 292–305.
    • (2016) Article Appl Math Comput , vol.274 , pp. 292-305
    • Garg, H.1
  • 21
    • 84949267100 scopus 로고    scopus 로고
    • ANN–GA smart appliance scheduling for optimized energy management in the domestic sector
    • [21] Yuce, Baris, Rezgui, Yacine, Mourshed, Monjur, ANN–GA smart appliance scheduling for optimized energy management in the domestic sector. Energy Build 111 (Jan. 2016), 311–325.
    • (2016) Energy Build , vol.111 , pp. 311-325
    • Yuce, B.1    Rezgui, Y.2    Mourshed, M.3
  • 22
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • [22] Liu, D., Niu, D., Wang, H., Fan, L., Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 62 (Feb. 2014), 592–597.
    • (2014) Renew Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.2    Wang, H.3    Fan, L.4
  • 23
    • 63349102517 scopus 로고    scopus 로고
    • Parameter selection for support vector machines based on genetic algorithms to short-term power load forecasting
    • [23] Wu, J.L., Yang, S.X., Liu, C.S., Parameter selection for support vector machines based on genetic algorithms to short-term power load forecasting. J Central South Univ Sci Technol 40:1 (Feb. 2009), 180–184.
    • (2009) J Central South Univ Sci Technol , vol.40 , Issue.1 , pp. 180-184
    • Wu, J.L.1    Yang, S.X.2    Liu, C.S.3
  • 24
    • 84931575306 scopus 로고    scopus 로고
    • Predicting the wind power density based upon extreme learning machine
    • [24] Mohammadi, K., Shamshirband, S., Yee, Por Lip, Petkovic, D., Zamani, M., Sudheer, Ch, Predicting the wind power density based upon extreme learning machine. Energy 86:15 (Jun. 2015), 232–239.
    • (2015) Energy , vol.86 , Issue.15 , pp. 232-239
    • Mohammadi, K.1    Shamshirband, S.2    Yee, P.L.3    Petkovic, D.4    Zamani, M.5    Sudheer, C.6
  • 25
    • 85043751154 scopus 로고    scopus 로고
    • Data source, available:.
    • [25] Data source, available: http://www.elia.be/en/griddata/power-generation.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.