-
1
-
-
85060373101
-
Research on forecasting problem based on multiple linear regression model PM2.5
-
Y. Zhang, Y. He, and J. Zhu, "Research on forecasting problem based on multiple linear regression model PM2.5, " J. Anhui Sci. Technol. Univ., vol. 30, no. 3, pp. 92-97', 2016.
-
(2016)
J. Anhui Sci. Technol. Univ.
, vol.30
, Issue.3
, pp. 92-97'
-
-
Zhang, Y.1
He, Y.2
Zhu, J.3
-
2
-
-
79958048247
-
A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM2.5
-
K. R. Baker and K. M. Foley, "A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM2.5, " Atmos. Environ., vol. 45, no. 22, pp. 3758-3767, 2011.
-
(2011)
Atmos. Environ.
, vol.45
, Issue.22
, pp. 3758-3767
-
-
Baker, K.R.1
Foley, K.M.2
-
3
-
-
9944223325
-
Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua)
-
J. B. Ordieresa, E. P. Vergara, R. S. Capuz, and R. E. Salazar, "Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua), " Environ. Model. Softw., vol. 20, no. 5, pp. 547-559, 2005.
-
(2005)
Environ. Model. Softw.
, vol.20
, Issue.5
, pp. 547-559
-
-
Ordieresa, J.B.1
Vergara, E.P.2
Capuz, R.S.3
Salazar, R.E.4
-
4
-
-
85057144114
-
PM2.5 prediction based on neural network
-
Sep.
-
Z. Wang and Z. Long, "PM2.5 prediction based on neural network, " in Proc. 11th Int. Conf. Intell. Comput. Technol. Automat. (ICICTA), Chang-sha, China, Sep. 2018, pp. AA-A1.
-
(2018)
Proc. 11th Int. Conf. Intell. Comput. Technol. Automat. (ICICTA), Chang-sha, China
, pp. AA-A1
-
-
Wang, Z.1
Long, Z.2
-
5
-
-
85062228662
-
The comparison of PM2.5 forecasting methods in the form of multivariate and univariate time series based on support vector machine and genetic algorithm
-
Jul.
-
R. Chuentawat and Y. Kan-Ngan, "The comparison of PM2.5 forecasting methods in the form of multivariate and univariate time series based on support vector machine and genetic algorithm, " in Proc. 15th Int. Conf. Electr. EngJElectron., Comput., Telecommun. Inf. Technol. (ECTI-CON), Chiang Rai, Thailand, Jul. 2018, pp. 572-575.
-
(2018)
Proc. 15th Int. Conf. Electr. EngJElectron., Comput., Telecommun. Inf. Technol. (ECTI-CON), Chiang Rai, Thailand
, pp. 572-575
-
-
Chuentawat, R.1
Kan-Ngan, Y.2
-
6
-
-
84901006073
-
Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering
-
Sep.
-
M. A. Elangasinghe, N. Singhal, and K. N. Dirks, "Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering, " Atmos. Environ., vol. 94, pp. 106-116, Sep. 2014.
-
(2014)
Atmos. Environ.
, vol.94
, pp. 106-116
-
-
Elangasinghe, M.A.1
Singhal, N.2
Dirks, K.N.3
-
7
-
-
85053152677
-
Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting
-
Jan.
-
A. G. Salman, Y Heryadi, E. Abdurahman, and W. Suparta, "Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting, " Procedia Comput. Set, vol. 135, pp. 89-98, Jan. 2018.
-
(2018)
Procedia Comput. Set
, vol.135
, pp. 89-98
-
-
Salman, A.G.1
Heryadi, Y.2
Abdurahman, E.3
Suparta, W.4
-
8
-
-
85056866995
-
Air pollution forecasting using RNN with LSTM
-
Y. Tsai, Y Zeng, and Y Chang, "Air pollution forecasting using RNN with LSTM, " in Proc. IEEE 16th Int. Conf. Dependable, Autonomic Secure Comput., 16th Int. Conf. Pervasive Intell. Corn-put., 4th Int. Conf. Big Data Intell. Comput. Cyber Sci. Technol. Congr. (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 2018, pp. 1074-1079.
-
(2018)
Proc. IEEE 16th Int. Conf. Dependable, Autonomic Secure Comput., 16th Int. Conf. Pervasive Intell. Corn-put., 4th Int. Conf. Big Data Intell. Comput. Cyber Sci. Technol. Congr. (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece
, pp. 1074-1079
-
-
Tsai, Y.1
Zeng, Y.2
Chang, Y.3
-
9
-
-
85047441990
-
Deep neural network for PM2.5 pollution forecasting based on manifold learning
-
Aug.
-
J. Xie, "Deep neural network for PM2.5 pollution forecasting based on manifold learning, " in Proc. Int. Conf. Sens., Diag., Prognostics, Control (SDPC), Shanghai, China, Aug. 2017, pp. 236-240.
-
(2017)
Proc. Int. Conf. Sens., Diag., Prognostics, Control (SDPC), Shanghai, China
, pp. 236-240
-
-
Xie, J.1
-
10
-
-
85068252767
-
-
[Online]
-
B. Wang, Z. Yan, H. Luo, T. Li, J. Lu, and G. Zhang, "Deep uncertainty learning: A machine learning approach for weather forecasting, " 2018, [Online]. Available: https://arxiv.org/abs/1812.09467v2
-
(2018)
Deep Uncertainty Learning: A Machine Learning Approach for Weather Forecasting
-
-
Wang, B.1
Yan, Z.2
Luo, H.3
Li, T.4
Lu, J.5
Zhang, G.6
-
11
-
-
85060403221
-
Encoder-decoder model for forecast of PM2.5 concentration per hour
-
Aug.
-
L. Yan, Y Wu, L. Yan, and M. Zhou, "Encoder-decoder model for forecast of PM2.5 concentration per hour, " in Proc. Istlnt. Cogn. Cities Conf. (IC3), Okinawa, Japan, Aug. 2018, pp. 45-50.
-
(2018)
Proc. Istlnt. Cogn. Cities Conf. (IC3), Okinawa, Japan
, pp. 45-50
-
-
Yan, L.1
Wu, Y.2
Yan, L.3
Zhou, M.4
-
12
-
-
85049071023
-
DeepAirNet: Applying recurrent networks for air quality prediction
-
Dec.
-
V. Athira, P. Geetha, R. Vinayakumar, and K. P. Soman, "DeepAirNet: Applying recurrent networks for air quality prediction, " Procedia Comput. Sci., vol. 132, pp. 1394-1403, Dec. 2018.
-
(2018)
Procedia Comput. Sci.
, vol.132
, pp. 1394-1403
-
-
Athira, V.1
Geetha, P.2
Vinayakumar, R.3
Soman, K.P.4
-
13
-
-
84946077874
-
2.5 pollution: Severity, weather impact, APEC and winter heating
-
2.5 pollution: Severity, weather impact, APEC and winter heating, " Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 471, no. 2182, 2015, Art. no. 20150257.
-
(2015)
Proc. Roy. Soc. A, Math., Phys. Eng. Sci.
, vol.471
, Issue.2182
-
-
Liang, X.1
Zou, T.2
Guo, B.3
Li, S.4
Zhang, H.5
Zhang, S.6
Huang, H.7
Chen, S.X.8
-
14
-
-
84949810460
-
Deep convolutional neural networks on multichannel time series for human activity recognition
-
J. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy, "Deep convolutional neural networks on multichannel time series for human activity recognition, " in Proc. IJCAI, 2015, pp. 3995-4001.
-
(2015)
Proc. IJCAI
, pp. 3995-4001
-
-
Yang, J.1
Nguyen, M.N.2
San, P.P.3
Li, X.L.4
Krishnaswamy, S.5
-
15
-
-
85042085726
-
-
New York, NY USA: Manning Publications
-
F. Chollet, Deep Learning With Python. New York, NY, USA: Manning Publications, 2017, pp. 208-209.
-
(2017)
Deep Learning with Python
, pp. 208-209
-
-
Chollet, F.1
-
16
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory, " Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
18
-
-
84939821078
-
-
[Online].
-
J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evalua-tion of gated recurrent neural networks on sequence modeling, " 2014, arXiv:1412.3555. [Online]. Available: https://arxiv.org/abs/1412.3555
-
(2014)
Empirical Evalua-tion of Gated Recurrent Neural Networks on Sequence Modeling
-
-
Chung, J.1
Gulcehre, C.2
Cho, K.3
Bengio, Y.4
|