메뉴 건너뛰기




Volumn 52, Issue , 2015, Pages 1322-1330

Reviews on uncertainty analysis of wind power forecasting

Author keywords

Classification; Impact factors; Interval forecasting; Optimization strategy; Probabilistic forecasting; Uncertainty analysis; Wind power forecasting

Indexed keywords

DECISION MAKING; WEATHER FORECASTING; WIND POWER;

EID: 84940390709     PISSN: 13640321     EISSN: 18790690     Source Type: Journal    
DOI: 10.1016/j.rser.2015.07.197     Document Type: Review
Times cited : (195)

References (76)
  • 3
    • 50849089784 scopus 로고    scopus 로고
    • G. Kariniotakis State of the art on short-term wind power prediction.
    • June
    • G. Giebel, R. Brownsword, G. Kariniotakis State of the art on short-term wind power prediction. ANEMOS Deliverable Report D1.1, available online: (http://anemos.cma.fr), June; 2003.
    • (2003) ANEMOS Deliverable Report D1.1
    • Giebel, G.1    Brownsword, R.2
  • 5
    • 34548047478 scopus 로고    scopus 로고
    • Trading wind generation from short-term probabilistic forecasts of wind power
    • P. Pinson, C. Chevallier, and G. Kariniotakis Trading wind generation from short-term probabilistic forecasts of wind power IEEE Trans Power Syst 22 3 2007 1148 1156
    • (2007) IEEE Trans Power Syst , vol.22 , Issue.3 , pp. 1148-1156
    • Pinson, P.1    Chevallier, C.2    Kariniotakis, G.3
  • 6
    • 4043118236 scopus 로고    scopus 로고
    • On the optimization of the daily operation of a wind-hydro power plant
    • E.D. Castronuovo, and J.A.P. Lopes On the optimization of the daily operation of a wind-hydro power plant IEEE Trans Power Syst 19 3 2004 1599 1606
    • (2004) IEEE Trans Power Syst , vol.19 , Issue.3 , pp. 1599-1606
    • Castronuovo, E.D.1    Lopes, J.A.P.2
  • 7
    • 50849117137 scopus 로고    scopus 로고
    • Generation of statistical scenarios of short-term wind power production
    • Lausanne, 1-5 July
    • P. Pinson, G. Papaefthymiou, B. Klöckl, HA. Nielsen, Generation of statistical scenarios of short-term wind power production. Power Tech, 2007 IEEE. Lausanne, 1-5 July; 2007.
    • (2007) Power Tech, 2007 IEEE.
    • Pinson, P.1
  • 9
    • 34548162293 scopus 로고    scopus 로고
    • [Ph.D dissertation] University College Cork, National University of Ireland Moehrlen
    • C. Mohrlen Uncertainty in wind energy forecasting [Ph.D dissertation] 2004 University College Cork, National University of Ireland Moehrlen
    • (2004) Uncertainty in Wind Energy Forecasting
    • Mohrlen, C.1
  • 10
    • 19144369129 scopus 로고    scopus 로고
    • On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors
    • M. Lange On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors J Sol Energy Eng (Trans ASME) 127 2 2005 177 184
    • (2005) J Sol Energy Eng (Trans ASME) , vol.127 , Issue.2 , pp. 177-184
    • Lange, M.1
  • 12
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • P. Pinson, and G. Karinioiotis Conditional prediction intervals of wind power generation IEEE Trans Power Syst 25 4 2010
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.4
    • Pinson, P.1    Karinioiotis, G.2
  • 16
    • 61749097513 scopus 로고    scopus 로고
    • Skill forecasting from ensemble predictions of wind power
    • P. Pinson, H.A. Nielsen, H. Madsen, and G. Kariniotakis Skill forecasting from ensemble predictions of wind power Appl Energy 86 2009 1326 1334
    • (2009) Appl Energy , vol.86 , pp. 1326-1334
    • Pinson, P.1    Nielsen, H.A.2    Madsen, H.3    Kariniotakis, G.4
  • 18
    • 34548156412 scopus 로고    scopus 로고
    • Nonparametric probabilistic forecasts of wind power: Required properties and evaluation
    • P. Pinson, H.A. Nielsen, J.K. Møller, H. Madsen, and G. Kariniotakis Nonparametric probabilistic forecasts of wind power: required properties and evaluation Wind Energy 10 2007 497 516
    • (2007) Wind Energy , vol.10 , pp. 497-516
    • Pinson, P.1    Nielsen, H.A.2    Møller, J.K.3    Madsen, H.4    Kariniotakis, G.5
  • 22
    • 57949110864 scopus 로고    scopus 로고
    • Wind power prediction based on artificial neural network
    • G.F. Fan, W.S. Wang, C. Liu, and H.Z. Dai Wind power prediction based on artificial neural network Proc CSEE 28 34 2008 118 123
    • (2008) Proc CSEE , vol.28 , Issue.34 , pp. 118-123
    • Fan, G.F.1    Wang, W.S.2    Liu, C.3    Dai, H.Z.4
  • 23
    • 0034430901 scopus 로고    scopus 로고
    • Confidence intervals for neural network based short term load forecasting
    • P.A. da Silva, and L.S. Moulin Confidence intervals for neural network based short term load forecasting IEEE Trans Power Syst 15 4 Nov. 2000 1191 1196
    • (2000) IEEE Trans Power Syst , vol.15 , Issue.4 , pp. 1191-1196
    • Da Silva, P.A.1    Moulin, L.S.2
  • 24
    • 21144464610 scopus 로고
    • Calculating interval forecasts
    • C. Chatfield Calculating interval forecasts J Bus Econ. Stat 11 1993 121 135
    • (1993) J Bus Econ. Stat , vol.11 , pp. 121-135
    • Chatfield, C.1
  • 26
    • 0000505679 scopus 로고
    • A simple method for the construction of empirical confidence limits for economic forecasts
    • W.H. Williams, and M.L. Goodman A simple method for the construction of empirical confidence limits for economic forecasts J Am Stat Assoc 66 336 1971 752 754
    • (1971) J Am Stat Assoc , vol.66 , Issue.336 , pp. 752-754
    • Williams, W.H.1    Goodman, M.L.2
  • 27
    • 33244496469 scopus 로고    scopus 로고
    • Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts
    • H.A. Nielsen, H. Madsen, and T.S. Nielsen Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts Wind Energy 9 1-2 2006 95 108
    • (2006) Wind Energy , vol.9 , Issue.1-2 , pp. 95-108
    • Nielsen, H.A.1    Madsen, H.2    Nielsen, T.S.3
  • 30
    • 77958498652 scopus 로고    scopus 로고
    • Investigating improvements in the accuracy of prediction intervals for combination of forecasts: A simulation study
    • J.W. Taylor, and D.W. Bunn Investigating improvements in the accuracy of prediction intervals for combination of forecasts: a simulation study Int J Forecast 19 1 1999 57 70
    • (1999) Int J Forecast , vol.19 , Issue.1 , pp. 57-70
    • Taylor, J.W.1    Bunn, D.W.2
  • 31
    • 14344255817 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts using local quantile regression
    • J.B. Bremnes Probabilistic wind power forecasts using local quantile regression Wind Energy 7 1 2004 47 54
    • (2004) Wind Energy , vol.7 , Issue.1 , pp. 47-54
    • Bremnes, J.B.1
  • 32
    • 33244491943 scopus 로고    scopus 로고
    • A comparison of a few statistical models for making quantile wind power forecasts
    • J.B. Bremnes A comparison of a few statistical models for making quantile wind power forecasts Wind Energy 9 2006 3 11
    • (2006) Wind Energy , vol.9 , pp. 3-11
    • Bremnes, J.B.1
  • 33
    • 70049094192 scopus 로고    scopus 로고
    • Wind Power Density Forecasting Using Ensemble Predictions and Time Series Models
    • J. Taylor, and P. Mcsharry Wind Power Density Forecasting Using Ensemble Predictions and Time Series Models Energy Conversion IEEE Transaction on 24 3 2009 775 782
    • (2009) Energy Conversion IEEE Transaction on , vol.24 , Issue.3 , pp. 775-782
    • Taylor, J.1    McSharry, P.2
  • 36
    • 50949096797 scopus 로고    scopus 로고
    • Probabilistic Shortterm Wind Power Forecasting for the optimal management of wind generation
    • J. Juban, N. Siebert, GN. Kariniotakis, Probabilistic Shortterm Wind Power Forecasting for the optimal management of wind generation, Power Tech, IEEE LausanneIEEE, 2007, 683-688
    • (2007) Power Tech, IEEE LausanneIEEE , pp. 683-688
    • Juban, J.1    Siebert, N.2    Kariniotakis, G.N.3
  • 38
    • 80755122841 scopus 로고    scopus 로고
    • Time-adaptive quantile-Copula for wind power probabilistic forecasting
    • R. Bessa, V. Miranda, A. Botterud, Z. Zhou, and J. Wang Time-adaptive quantile-Copula for wind power probabilistic forecasting Renew Energy 40 1 2012 2 7
    • (2012) Renew Energy , vol.40 , Issue.1 , pp. 2-7
    • Bessa, R.1    Miranda, V.2    Botterud, A.3    Zhou, Z.4    Wang, J.5
  • 40
    • 77950945178 scopus 로고    scopus 로고
    • Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression
    • T.L. Thorarinsdottir, and T. Gneiting Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression J R Stat Soc A 173 2010 371 388
    • (2010) J R Stat Soc A , vol.173 , pp. 371-388
    • Thorarinsdottir, T.L.1    Gneiting, T.2
  • 41
    • 63049105616 scopus 로고    scopus 로고
    • Ensemble-based probabilistic forecasting at Horns Rev
    • P. Pinson, and H. Madsen Ensemble-based probabilistic forecasting at Horns Rev Wind Energy 12 2 2009 137 155
    • (2009) Wind Energy , vol.12 , Issue.2 , pp. 137-155
    • Pinson, P.1    Madsen, H.2
  • 42
    • 14344258897 scopus 로고    scopus 로고
    • On-line assessment of prediction risk for wind power production forecasts
    • P. Pinson, and G. Kariniotakis On-line assessment of prediction risk for wind power production forecasts Wind Energy 7 2004 119 132 10.1002/we.114
    • (2004) Wind Energy , vol.7 , pp. 119-132
    • Pinson, P.1    Kariniotakis, G.2
  • 52
    • 0001342006 scopus 로고
    • A new approach to the economic analysis of nonstationary time-series and business cycles
    • J.D. Hamilton A new approach to the economic analysis of nonstationary time-series and business cycles Econometrica 5.7 1989 357 384
    • (1989) Econometrica , vol.5-7 , pp. 357-384
    • Hamilton, J.D.1
  • 53
    • 33748872845 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting at the state-line wind energy center - The regime-switching space-time method
    • T. Gneiting, K. Larson, K. Westrick, M.G. Genton, and E. Aldrich Calibrated probabilistic forecasting at the state-line wind energy center - the regime-switching space-time method J Am Stat Assoc 101 2006 968 979
    • (2006) J Am Stat Assoc , vol.101 , pp. 968-979
    • Gneiting, T.1    Larson, K.2    Westrick, K.3    Genton, M.G.4    Aldrich, E.5
  • 54
    • 31744451232 scopus 로고    scopus 로고
    • Short-term prediction of wind energy production
    • I. Sanchez Short-term prediction of wind energy production Int J Forecast 22 2006 43 56
    • (2006) Int J Forecast , vol.22 , pp. 43-56
    • Sanchez, I.1
  • 55
    • 77953507123 scopus 로고    scopus 로고
    • Resolving non-stationary spectral signals in wind speed time-series using the Hilbert-Huang transform
    • C.L. Vincent, G. Giebel, P. Pinson, and H. Madsen Resolving non-stationary spectral signals in wind speed time-series using the Hilbert-Huang transform J Appl Meteorol Climatol 49 2010 253 267
    • (2010) J Appl Meteorol Climatol , vol.49 , pp. 253-267
    • Vincent, C.L.1    Giebel, G.2    Pinson, P.3    Madsen, H.4
  • 56
    • 74149093707 scopus 로고    scopus 로고
    • From probabilistic forecasts to statistical scenarios of short-term wind power production
    • P. Pinson, G. Papaefthymiou, B. Klöckl, H.A. Nielsen, and H. Madsen From probabilistic forecasts to statistical scenarios of short-term wind power production Wind Energy 12 1 2009 51 62
    • (2009) Wind Energy , vol.12 , Issue.1 , pp. 51-62
    • Pinson, P.1    Papaefthymiou, G.2    Klöckl, B.3    Nielsen, H.A.4    Madsen, H.5
  • 60
    • 84892463603 scopus 로고    scopus 로고
    • Application of quantile regression on wind power prediction uncertainty analysis
    • in Chinese[[J].. 2013, 34 (12): 2101-2107]
    • J. Yan, Y.Q. Liu, and S. Han Application of quantile regression on wind power prediction uncertainty analysis Acta Energiae Sol Sin 34 12 2013 2101 2107, in Chinese[[J].. 2013, 34 (12): 2101-2107]
    • (2013) Acta Energiae Sol Sin , vol.34 , Issue.12 , pp. 2101-2107
    • Yan, J.1    Liu, Y.Q.2    Han, S.3
  • 61
    • 84875447128 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on CFD pre-calculated flow fields
    • L. Li, Y.Q. Liu, Y.P. Yang, and S. Han Short-term wind speed forecasting based on CFD pre-calculated flow fields Proc CSEE 33 7 2013 27 32
    • (2013) Proc CSEE , vol.33 , Issue.7 , pp. 27-32
    • Li, L.1    Liu, Y.Q.2    Yang, Y.P.3    Han, S.4
  • 63
    • 82855171497 scopus 로고    scopus 로고
    • Probabilistic load flow analysis for power systems with multi-correlated wind sources
    • 24-29 July 2011, San Diego, CA
    • Qiang Fu, D. Yu, J. Ghorai, Probabilistic load flow analysis for power systems with multi-correlated wind sources. Power and energy society general meeting, IEEE, 24-29 July 2011, San Diego, CA; 2011. p. 1-6.
    • (2011) Power and Energy Society General Meeting, IEEE , pp. 1-6
    • Fu, Q.1    Yu, D.2    Ghorai, J.3
  • 64
    • 78650915564 scopus 로고    scopus 로고
    • A quantitative approach to wind farm diversification and reliability
    • Y. Degeilh, and C. Singh A quantitative approach to wind farm diversification and reliability Electr Power Energy Syst 33 2011 303 314
    • (2011) Electr Power Energy Syst , vol.33 , pp. 303-314
    • Degeilh, Y.1    Singh, C.2
  • 65
    • 84940407427 scopus 로고    scopus 로고
    • From probabilistic forecasts to short-term statistical scenarios of wind generation
    • [in press]
    • P. Pinson, G. Papaefthymiou, B. Klockl, H.A. Nielsen, and H. Madsen From probabilistic forecasts to short-term statistical scenarios of wind generation Wind Energy 2015 [in press]
    • (2015) Wind Energy
    • Pinson, P.1    Papaefthymiou, G.2    Klockl, B.3    Nielsen, H.A.4    Madsen, H.5
  • 68
    • 84881341396 scopus 로고    scopus 로고
    • Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine
    • J. Yan, Y.Q. Liu, S. Han, and M. Qiu Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine Renew Sustain Energy Rev 27 2013 613 621
    • (2013) Renew Sustain Energy Rev , vol.27 , pp. 613-621
    • Yan, J.1    Liu, Y.Q.2    Han, S.3    Qiu, M.4
  • 69
    • 84893011973 scopus 로고    scopus 로고
    • An integration of enhanced wind power interval forecasting into reactive power dispatching
    • Beijing China, Sep 9-11
    • J. Yan, Y.Q. Liu, S. Han, Y. Yang, An integration of enhanced wind power interval forecasting into reactive power dispatching. IET 2nd renewable power generation conference. Beijing China, Sep 9-11; 2013.
    • (2013) IET 2nd Renewable Power Generation Conference
    • Yan, J.1    Liu, Y.Q.2    Han, S.3    Yang, Y.4
  • 70
    • 84893275099 scopus 로고    scopus 로고
    • Review on probabilistic forecasting of wind power generation
    • Y. Zhang, J. Wang, and X. Wang Review on probabilistic forecasting of wind power generation Renew Sustain Energy Rev 32 2014 255 270
    • (2014) Renew Sustain Energy Rev , vol.32 , pp. 255-270
    • Zhang, Y.1    Wang, J.2    Wang, X.3
  • 71
    • 84903119035 scopus 로고    scopus 로고
    • Hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
    • A.U. Haque, M.H. Nehrir, and P. Mandal Hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting IEEE Trans Power Syst 29 4 2014 1663 1672
    • (2014) IEEE Trans Power Syst , vol.29 , Issue.4 , pp. 1663-1672
    • Haque, A.U.1    Nehrir, M.H.2    Mandal, P.3
  • 72
    • 84867988966 scopus 로고    scopus 로고
    • Hatziargyriou, Probabilistic wind power forecasting using radial basis function neural networks
    • G. Sideratos, and N.D. Hatziargyriou Hatziargyriou, Probabilistic wind power forecasting using radial basis function neural networks IEEE Trans Power Syst 27 4 2012 1788 1796
    • (2012) IEEE Trans Power Syst , vol.27 , Issue.4 , pp. 1788-1796
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 73
    • 84899566603 scopus 로고    scopus 로고
    • Probabilistic forecasting of wind power generation using extreme learning machine
    • W. Can, X. Zhao, P. Pinson, Y. Zhao, and P. Kit Probabilistic forecasting of wind power generation using extreme learning machine IEEE Trans Power Syst 29 3 2014 1033 1044
    • (2014) IEEE Trans Power Syst , vol.29 , Issue.3 , pp. 1033-1044
    • Can, W.1    Zhao, X.2    Pinson, P.3    Zhao, Y.4    Kit, P.5
  • 74
    • 84893303261 scopus 로고    scopus 로고
    • Optimal prediction intervals of wind power generation
    • W. Can, X. Zhao, P. Pison, Y. Zhao, and P. Kit Optimal prediction intervals of wind power generation IEEE Trans Power Syst 29 3 2014 1166 1174
    • (2014) IEEE Trans Power Syst , vol.29 , Issue.3 , pp. 1166-1174
    • Can, W.1    Zhao, X.2    Pison, P.3    Zhao, Y.4    Kit, P.5
  • 75
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G. Huang, Q. Zhu, Y. Qin, and C. Siew Extreme learning machine: theory and applications Neurocomputing 70 1 2006 489 501
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Qin, Y.3    Siew, C.4
  • 76
    • 84901428043 scopus 로고    scopus 로고
    • Probabilistic wind power forecasting with online model selection and warped Gaussian process
    • P. Kou, D. Liang, F. Gao, and L. Gao Probabilistic wind power forecasting with online model selection and warped gaussian process Energy Convers Manag 84 2014 649 663
    • (2014) Energy Convers Manag , vol.84 , pp. 649-663
    • Kou, P.1    Liang, D.2    Gao, F.3    Gao, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.