메뉴 건너뛰기




Volumn 3, Issue , 2017, Pages 2130-2143

On calibration of modern neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; INFORMATION RETRIEVAL SYSTEMS; LEARNING SYSTEMS;

EID: 85047020009     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2291)

References (47)
  • 3
    • 84954180053 scopus 로고    scopus 로고
    • Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day rcadmission
    • Caruana, Rich, Lou, Yin, Gehrke, Johannes, Koch, Paul, Sturm, Marc, and Elhadad, Noemie. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day rcadmission. In KDD, 2015
    • (2015) KDD
    • Rich, C.1    Yin, L.2    Johannes, G.3    Paul, K.4    Marc, S.5    Noemie, E.6
  • 4
    • 84989815411 scopus 로고    scopus 로고
    • Torch7: A matlab-like environment for machine learning
    • Collobert, Ronan, Kavukcuoglu, Koray, and Farabet, Clément. Torch7: A matlab-like environment for machine learning. In BigLearn Workshop, NIPS, 2011
    • (2011) BigLearn Workshop, NIPS
    • Ronan, C.1    Koray, K.2    Clément, F.3
  • 5
    • 0042123195 scopus 로고    scopus 로고
    • Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty
    • Cosmides, Leda and Tooby, John. Are humans good intuitive statisticians after all? rethinking some conclusions from the literature on judgment under uncertainty, cog-w7vi,58(l):l-73, 1996
    • (1996) COG-w7vi , vol.58 , Issue.1 , pp. 1-73
    • Leda, C.1    John, T.2
  • 7
    • 72249100259 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li. Imagenet: A large-scale hierarchical image database. In CVPR, pp. 248-255, 2009
    • (2009) CVPR , pp. 248-255
    • Jia, D.1    Wei, D.2    Richard, S.3    Li-Jia, L.4    Kai, L.5    Li, F.6
  • 8
    • 0011847141 scopus 로고
    • Transforming neural-net output levels to probability distributions
    • Denker, John S and Lecun, Yann. Transforming neural-net output levels to probability distributions. In NIPS, pp. 853-859, 1990
    • (1990) NIPS , pp. 853-859
    • Denker John, S.1    Yann, L.2
  • 10
    • 84998879817 scopus 로고    scopus 로고
    • Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
    • Gal, Yarin and Ghahramani, Zoubin. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In ICML, 2016
    • (2016) ICML
    • Yarin, G.1    Zoubin, G.2
  • 11
    • 84964588182 scopus 로고    scopus 로고
    • Fastr-cnn
    • Girshick, Ross. Fastr-cnn. In ICCV, pp. 1440-1448, 2015
    • (2015) ICCV , pp. 1440-1448
    • Ross, G.1
  • 13
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image recognition. In CVPR, pp. 770-778, 2016
    • (2016) CVPR , pp. 770-778
    • Kaiming, H.1    Xiangyu, Z.2    Shaoqing, R.3    Jian, S.4
  • 14
    • 85048447329 scopus 로고    scopus 로고
    • A baseline for detecting misclassified and out-of-distribution examples in neural networks
    • Hendrycks, Dan and Gimpel, Kevin. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR, 2017
    • (2017) ICLR
    • Dan, H.1    Kevin, G.2
  • 19
    • 84943803518 scopus 로고    scopus 로고
    • Hal. Deep unordered composition rivals syntactic methods for text classification
    • Iyycr, Mohit, Manjunatha, Varun, Boyd-Grabcr, Jordan, and Daumé III, Hal. Deep unordered composition rivals syntactic methods for text classification. In ACL, 2015
    • (2015) ACL
    • Mohit, I.1    Varun, M.2    Jordan, B.3
  • 20
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes, Edwin T. Information theory and statistical mechanics. Physical review, 106(4):620, 1957
    • (1957) Physical Review , vol.106 , Issue.4 , pp. 620
    • Jaynes Edwin, T.1
  • 27
    • 84965174939 scopus 로고    scopus 로고
    • Calibrated structured prediction
    • Kuleshov, Volodymyr and Liang, Percy. Calibrated structured prediction. In NIPS, pp. 3474-3482, 2015
    • (2015) NIPS , pp. 3474-3482
    • Volodymyr, K.1    Percy, L.2
  • 29
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner, Patrick. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Yann, L.1    Léon, B.2    Yoshua, B.3    Patrick, H.4
  • 30
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, David JC. A practical Bayesian framework for backpropagation networks. Neural computation, 4(3): 448-472, 1992
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay David, J.C.1
  • 31
    • 84960117979 scopus 로고    scopus 로고
    • Obtaining well calibrated probabilities using Bayesian binning
    • Naeini, Mahdi Pakdaman, Cooper, Gregory F, and Hauskrecht, Milos. Obtaining well calibrated probabilities using Bayesian binning. In AAAI, pp. 2901, 2015
    • (2015) AAAI , pp. 2901
    • Mahdi Pakdaman, N.1    Cooper Gregory, F.2    Milos, H.3
  • 33
    • 31844433358 scopus 로고    scopus 로고
    • Predicting good probabilities with supervised learning
    • Niculescu-Mizil, Alcxandru and Caruana, Rich. Predicting good probabilities with supervised learning. In ICML, pp. 625-632,2005
    • (2005) ICML , pp. 625-632
    • Alcxandru, N.1    Rich, C.2
  • 35
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Piatt, John et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 10(3): 61-74, 1999
    • (1999) Advances in Large Margin Classifiers , vol.10 , Issue.3 , pp. 61-74
    • John, P.1
  • 36
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, Karen and Zisserman, Andrew. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
    • (2015) ICLR
    • Karen, S.1    Andrew, Z.2
  • 38
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 1929-1958
    • Nitish, S.1    Geoffrey, H.2    Alex, K.3    Ilya, S.4    Ruslan, S.5
  • 44
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • Zadrozny, Bianca and Elkan, Charles. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In ICML, pp. 609-616, 2001
    • (2001) ICML , pp. 609-616
    • Bianca, Z.1    Charles, E.2
  • 45
    • 0242456763 scopus 로고    scopus 로고
    • Transforming classifier scores into accurate multiclass probability estimates
    • Zadrozny, Bianca and Elkan, Charles. Transforming classifier scores into accurate multiclass probability estimates. In KDD, pp. 694-699, 2002
    • (2002) KDD , pp. 694-699
    • Bianca, Z.1    Charles, E.2
  • 46
    • 84990053656 scopus 로고    scopus 로고
    • Wide residual networks
    • Zagoruyko, Sergey and Komodakis, Nikos. Wide residual networks. InβMVC, 2016
    • (2016) βmVC
    • Sergey, Z.1    Nikos, K.2
  • 47
    • 85088231398 scopus 로고    scopus 로고
    • Understanding deep learning requires rethinking generalization
    • Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Benjamin, and Vinyals, Oriol. Understanding deep learning requires rethinking generalization. In ICLR, 2017.
    • (2017) ICLR
    • Chiyuan, Z.1    Samy, B.2    Moritz, H.3    Benjamin, R.4    Oriol, V.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.