메뉴 건너뛰기




Volumn 46, Issue 7, 2018, Pages 1070-1077

The development of a machine learning inpatient acute kidney injury prediction model

Author keywords

Acute kidney injury; Biomarker; Electronic health record; Risk assessment

Indexed keywords

ANTIINFECTIVE AGENT; CREATININE; DIURETIC AGENT; FRESH FROZEN PLASMA; INOTROPIC AGENT; INSULIN; NITROGEN; ORAL ANTIDIABETIC AGENT; PROTON PUMP INHIBITOR; UREA; VASOACTIVE AGENT;

EID: 85053003984     PISSN: 00903493     EISSN: 15300293     Source Type: Journal    
DOI: 10.1097/CCM.0000000000003123     Document Type: Article
Times cited : (228)

References (38)
  • 1
    • 33644874086 scopus 로고    scopus 로고
    • Acute kidney injury, mortality, length of stay, and costs in hospitalized patients
    • Chertow GM, Burdick E, Honour M, et al: Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 2005; 16:3365-3370
    • (2005) J Am Soc Nephrol , vol.16 , pp. 3365-3370
    • Chertow, G.M.1    Burdick, E.2    Honour, M.3
  • 2
    • 84937845363 scopus 로고    scopus 로고
    • Cost and mortality associated with postoperative acute kidney injury
    • Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, et al: Cost and mortality associated with postoperative acute kidney injury. Ann Surg 2015; 261:1207-1214
    • (2015) Ann Surg , vol.261 , pp. 1207-1214
    • Hobson, C.1    Ozrazgat-Baslanti, T.2    Kuxhausen, A.3
  • 3
    • 0031945285 scopus 로고    scopus 로고
    • Independent association between acute renal failure and mortality following cardiac surgery
    • Chertow GM, Levy EM, Hammermeister KE, et al: Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 1998; 104:343-348
    • (1998) Am J Med , vol.104 , pp. 343-348
    • Chertow, G.M.1    Levy, E.M.2    Hammermeister, K.E.3
  • 4
    • 84884342549 scopus 로고    scopus 로고
    • Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group: KDIGO clinical practice guideline for acute kidney injury
    • KDIGO. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2012; 2(Suppl 1):1-138
    • (2012) Kidney Int , vol.2 , pp. 1-138
  • 5
    • 84880412794 scopus 로고    scopus 로고
    • Identifying the patient at risk of acute kidney injury: A predictive scoring system for the development of acute kidney injury in acute medical patients
    • Forni LG, Dawes T, Sinclair H, et al: Identifying the patient at risk of acute kidney injury: A predictive scoring system for the development of acute kidney injury in acute medical patients. Nephron Clin Pract 2013; 123:143-150
    • (2013) Nephron Clin Pract , vol.123 , pp. 143-150
    • Forni, L.G.1    Dawes, T.2    Sinclair, H.3
  • 6
    • 85019718543 scopus 로고    scopus 로고
    • Development of a multicenter ward-based AKI prediction model
    • Koyner JL, Adhikari R, Edelson DP, et al: Development of a multicenter ward-based AKI prediction model. Clin J Am Soc Nephrol 2016; 11:1935-1943
    • (2016) Clin J Am Soc Nephrol , vol.11 , pp. 1935-1943
    • Koyner, J.L.1    Adhikari, R.2    Edelson, D.P.3
  • 7
    • 85010953626 scopus 로고    scopus 로고
    • Approaches to predicting outcomes in patients with acute kidney injury
    • Saly D, Yang A, Triebwasser C, et al: Approaches to predicting outcomes in patients with acute kidney injury. PLoS One 2017; 12:e0169305
    • (2017) PLoS One , vol.12
    • Saly, D.1    Yang, A.2    Triebwasser, C.3
  • 8
    • 85010792818 scopus 로고    scopus 로고
    • AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: Development, validation and comparison to serum neutrophil gelatinase-associated lipocalin
    • Flechet M, Güiza F, Schetz M, et al: AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: Development, validation and comparison to serum neutrophil gelatinase-associated lipocalin. Intensive Care Med 2017; 43: 764-773
    • (2017) Intensive Care Med , vol.43 , pp. 764-773
    • Flechet, M.1    Güiza, F.2    Schetz, M.3
  • 9
    • 85020189897 scopus 로고    scopus 로고
    • A risk prediction score for acute kidney injury in the intensive care unit
    • Malhotra R, Kashani KB, Macedo E, et al: A risk prediction score for acute kidney injury in the intensive care unit. Nephrol Dial Transplant 2017; 32:814-822
    • (2017) Nephrol Dial Transplant , vol.32 , pp. 814-822
    • Malhotra, R.1    Kashani, K.B.2    Macedo, E.3
  • 10
    • 84941315637 scopus 로고    scopus 로고
    • Development and validation of electronic surveillance tool for acute kidney injury: A retrospective analysis
    • Ahmed A, Vairavan S, Akhoundi A, et al: Development and validation of electronic surveillance tool for acute kidney injury: A retrospective analysis. J Crit Care 2015; 30:988-993
    • (2015) J Crit Care , vol.30 , pp. 988-993
    • Ahmed, A.1    Vairavan, S.2    Akhoundi, A.3
  • 11
    • 84973111641 scopus 로고    scopus 로고
    • Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications
    • Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, et al: Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS One 2016; 11: e0155705
    • (2016) PLoS One , vol.11
    • Thottakkara, P.1    Ozrazgat-Baslanti, T.2    Hupf, B.B.3
  • 12
    • 85032453950 scopus 로고    scopus 로고
    • Calibration drift in regression and machine learning models for acute kidney injury
    • Davis SE, Lasko TA, Chen G, et al: Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc 2017; 24:1052-1061
    • (2017) J Am Med Inform Assoc , vol.24 , pp. 1052-1061
    • Davis, S.E.1    Lasko, T.A.2    Chen, G.3
  • 13
    • 85007609237 scopus 로고    scopus 로고
    • Prediction and detection models for acute kidney injury in hospitalized older adults
    • Kate RJ, Perez RM, Mazumdar D, et al: Prediction and detection models for acute kidney injury in hospitalized older adults. BMC Med Inform Decis Mak 2016; 16:39
    • (2016) BMC Med Inform Decis Mak , vol.16 , pp. 39
    • Kate, R.J.1    Perez, R.M.2    Mazumdar, D.3
  • 14
    • 84908118538 scopus 로고    scopus 로고
    • The daily burden of acute kidney injury: A survey of U.S. Nephrologists on world kidney day
    • Koyner JL, Cerdá J, Goldstein SL, et al; Acute Kidney Injury Advisory Group of the American Society of Nephrology: The daily burden of acute kidney injury: A survey of U.S. nephrologists on World Kidney Day. Am J Kidney Dis 2014; 64:394-401
    • (2014) Am J Kidney Dis , vol.64 , pp. 394-401
    • Koyner, J.L.1    Cerdá, J.2    Goldstein, S.L.3
  • 15
    • 85026907756 scopus 로고    scopus 로고
    • Characteristics and outcomes of patients discharged home from an emergency department with AKI
    • Jul 20. Epub ahead of print
    • Acedillo RR, Wald R, McArthur E, et al: Characteristics and outcomes of patients discharged home from an emergency department with AKI. Clin J Am Soc Nephrol 2017 Jul 20. [Epub ahead of print]
    • (2017) Clin J Am Soc Nephrol
    • Acedillo, R.R.1    Wald, R.2    McArthur, E.3
  • 16
    • 34447628673 scopus 로고    scopus 로고
    • RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: A cohort analysis
    • Hoste EA, Clermont G, Kersten A, et al: RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: A cohort analysis. Crit Care 2006; 10:R73
    • (2006) Crit Care , vol.10 , pp. R73
    • Hoste, E.A.1    Clermont, G.2    Kersten, A.3
  • 17
    • 34047207260 scopus 로고    scopus 로고
    • Incidence and outcomes in acute kidney injury: A comprehensive population-based study
    • Ali T, Khan I, Simpson W, et al: Incidence and outcomes in acute kidney injury: A comprehensive population-based study. J Am Soc Nephrol 2007; 18:1292-1298
    • (2007) J Am Soc Nephrol , vol.18 , pp. 1292-1298
    • Ali, T.1    Khan, I.2    Simpson, W.3
  • 18
    • 35448952666 scopus 로고    scopus 로고
    • RIFLE classification can predict short-term prognosis in critically ill cirrhotic patients
    • Jenq CC, Tsai MH, Tian YC, et al: RIFLE classification can predict short-term prognosis in critically ill cirrhotic patients. Intensive Care Med 2007; 33:1921-1930
    • (2007) Intensive Care Med , vol.33 , pp. 1921-1930
    • Jenq, C.C.1    Tsai, M.H.2    Tian, Y.C.3
  • 19
    • 84963701085 scopus 로고    scopus 로고
    • Real-time risk prediction on the wards: A feasibility study
    • Kang MA, Churpek MM, Zadravecz FJ, et al: Real-time risk prediction on the wards: A feasibility study. Crit Care Med 2016; 44:1468-1473
    • (2016) Crit Care Med , vol.44 , pp. 1468-1473
    • Kang, M.A.1    Churpek, M.M.2    Zadravecz, F.J.3
  • 20
    • 84954349720 scopus 로고    scopus 로고
    • Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
    • Churpek MM, Yuen TC, Winslow C, et al: Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med 2016; 44:368-374
    • (2016) Crit Care Med , vol.44 , pp. 368-374
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3
  • 22
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988; 44:837-845
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 23
    • 84945575128 scopus 로고    scopus 로고
    • Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward patients
    • Churpek MM, Zadravecz FJ, Winslow C, et al: Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward patients. Am J Respir Crit Care Med 2015; 192:958-964
    • (2015) Am J Respir Crit Care Med , vol.192 , pp. 958-964
    • Churpek, M.M.1    Zadravecz, F.J.2    Winslow, C.3
  • 24
    • 84921697939 scopus 로고    scopus 로고
    • Multicenter development and validation of a risk stratification tool for ward patients
    • Churpek MM, Yuen TC, Winslow C, et al: Multicenter development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med 2014; 190:649-655
    • (2014) Am J Respir Crit Care Med , vol.190 , pp. 649-655
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3
  • 25
    • 84903705384 scopus 로고    scopus 로고
    • Acute kidney injury and chronic kidney disease as interconnected syndromes
    • Chawla LS, Eggers PW, Star RA, et al: Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014; 371:58-66
    • (2014) N Engl J Med , vol.371 , pp. 58-66
    • Chawla, L.S.1    Eggers, P.W.2    Star, R.A.3
  • 26
    • 33751219227 scopus 로고    scopus 로고
    • Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery
    • quiz 2208
    • Mehta RH, Grab JD, O'Brien SM, et al; Society of Thoracic Surgeons National Cardiac Surgery Database Investigators: Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation 2006; 114:2208-2216; quiz 2208
    • (2006) Circulation , vol.114 , pp. 2208-2216
    • Mehta, R.H.1    Grab, J.D.2    O'Brien, S.M.3
  • 27
    • 16344389033 scopus 로고    scopus 로고
    • A clinical score to predict acute renal failure after cardiac surgery
    • Thakar CV, Arrigain S, Worley S, et al: A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol 2005; 16: 162-168
    • (2005) J Am Soc Nephrol , vol.16 , pp. 162-168
    • Thakar, C.V.1    Arrigain, S.2    Worley, S.3
  • 28
    • 77749315175 scopus 로고    scopus 로고
    • Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery
    • Koyner JL, Bennett MR, Worcester EM, et al: Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int 2008; 23:23
    • (2008) Kidney Int , vol.23 , pp. 23
    • Koyner, J.L.1    Bennett, M.R.2    Worcester, E.M.3
  • 29
    • 84860602485 scopus 로고    scopus 로고
    • Bio-markers predict progression of acute kidney injury after cardiac surgery
    • Koyner JL, Garg AX, Coca SG, et al; TRIBE-AKI Consortium: Bio-markers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol 2012; 23:905-914
    • (2012) J Am Soc Nephrol , vol.23 , pp. 905-914
    • Koyner, J.L.1    Garg, A.X.2    Coca, S.G.3
  • 30
    • 78751631543 scopus 로고    scopus 로고
    • Early nephrologist involvement in hospital-acquired acute kidney injury: A pilot study
    • Balasubramanian G, Al-Aly Z, Moiz A, et al: Early nephrologist involvement in hospital-acquired acute kidney injury: A pilot study. Am J Kidney Dis 2011; 57:228-234
    • (2011) Am J Kidney Dis , vol.57 , pp. 228-234
    • Balasubramanian, G.1    Al-Aly, Z.2    Moiz, A.3
  • 31
    • 84881004719 scopus 로고    scopus 로고
    • Nephrology referral and outcomes in critically ill acute kidney injury patients
    • Costa e Silva VT, Liano F, Muriel A, et al: Nephrology referral and outcomes in critically ill acute kidney injury patients. PloS one 2013; 8:e70482
    • (2013) PloS One , vol.8
    • Costae Silva, V.T.1    Liano, F.2    Muriel, A.3
  • 32
    • 80052567581 scopus 로고    scopus 로고
    • Referral patterns and outcomes in noncritically ill patients with hospital-acquired acute kidney injury
    • Meier P, Bonfils RM, Vogt B, et al: Referral patterns and outcomes in noncritically ill patients with hospital-acquired acute kidney injury. Clin J Am Soc Nephrol 2011; 6:2215-2225
    • (2011) Clin J Am Soc Nephrol , vol.6 , pp. 2215-2225
    • Meier, P.1    Bonfils, R.M.2    Vogt, B.3
  • 33
    • 84927752479 scopus 로고    scopus 로고
    • The impact of integrating nephrologists into the postoperative cardiac intensive care unit: A cohort study
    • Flores-Gama C, Merino M, Baranda F, et al: The impact of integrating nephrologists into the postoperative cardiac intensive care unit: A cohort study. Cardiorenal Med 2013; 3:79-88
    • (2013) Cardiorenal Med , vol.3 , pp. 79-88
    • Flores-Gama, C.1    Merino, M.2    Baranda, F.3
  • 34
    • 84941343997 scopus 로고    scopus 로고
    • Impact of compliance with a care bundle on acute kidney injury outcomes: A prospective observational study
    • Kolhe NV, Staples D, Reilly T, et al: Impact of compliance with a care bundle on acute kidney injury outcomes: A prospective observational study. PLoS One 2015; 10:e0132279
    • (2015) PLoS One , vol.10
    • Kolhe, N.V.1    Staples, D.2    Reilly, T.3
  • 35
    • 84996538373 scopus 로고    scopus 로고
    • A simple care bundle for use in acute kidney injury: A propensity score-matched cohort study
    • Kolhe NV, Reilly T, Leung J, et al: A simple care bundle for use in acute kidney injury: A propensity score-matched cohort study. Nephrol Dial Transplant 2016; 31:1846-1854
    • (2016) Nephrol Dial Transplant , vol.31 , pp. 1846-1854
    • Kolhe, N.V.1    Reilly, T.2    Leung, J.3
  • 36
    • 85009881897 scopus 로고    scopus 로고
    • Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: The prevaki randomized controlled trial
    • Meersch M, Schmidt C, Hoffmeier A, et al: Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: The PrevAKI randomized controlled trial. Intensive Care Med 2017; 43: 1551-1561
    • (2017) Intensive Care Med , vol.43 , pp. 1551-1561
    • Meersch, M.1    Schmidt, C.2    Hoffmeier, A.3
  • 37
    • 85018168571 scopus 로고    scopus 로고
    • Diagnosis and outcomes of acute kidney injury using surrogate and imputation methods for missing preadmission creatinine values
    • Bernier-Jean A, Beaubien-Souligny W, Goupil R, et al: Diagnosis and outcomes of acute kidney injury using surrogate and imputation methods for missing preadmission creatinine values. BMC Nephrol 2017; 18:141
    • (2017) BMC Nephrol , vol.18 , pp. 141
    • Bernier-Jean, A.1    Beaubien-Souligny, W.2    Goupil, R.3
  • 38
    • 84929606720 scopus 로고    scopus 로고
    • Automated, electronic alerts for acute kidney injury: A single-blind, parallel-group, randomised controlled trial
    • Wilson FP, Shashaty M, Testani J, et al: Automated, electronic alerts for acute kidney injury: A single-blind, parallel-group, randomised controlled trial. Lancet 2015; 385:1966-1974
    • (2015) Lancet , vol.385 , pp. 1966-1974
    • Wilson, F.P.1    Shashaty, M.2    Testani, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.