-
1
-
-
44649128709
-
Diagnosis, epidemiology, and outcomes of acute kidney injury
-
Waikar SS, Liu KD, Chertow GM. Diagnosis, epidemiology, and outcomes of acute kidney injury. Clin J Am Soc Nephrol. 2008;3(3):844-861. doi:10.2215/CJN.05191107.
-
(2008)
Clin J Am Soc Nephrol
, vol.3
, Issue.3
, pp. 844-861
-
-
Waikar, S.S.1
Liu, K.D.2
Chertow, G.M.3
-
2
-
-
33644874086
-
Acute kidney injury, mortality, length of stay, and costs in hospitalized patients
-
Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365-3370. doi:10.1681/ASN.2004090740.
-
(2005)
J Am Soc Nephrol
, vol.16
, Issue.11
, pp. 3365-3370
-
-
Chertow, G.M.1
Burdick, E.2
Honour, M.3
Bonventre, J.V.4
Bates, D.W.5
-
3
-
-
85036542954
-
Cost of acute kidney injury in hospitalized patients
-
Silver SA, Long J, Zheng Y, Chertow GM. Cost of acute kidney injury in hospitalized patients. J Hosp Med. 2017;12(2):70-76.
-
(2017)
J Hosp Med
, vol.12
, Issue.2
, pp. 70-76
-
-
Silver, S.A.1
Long, J.2
Zheng, Y.3
Chertow, G.M.4
-
4
-
-
34247235247
-
Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury
-
Mehta RL, Kellum JA, Shah SV. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31. doi:10.1186/cc5713.
-
(2007)
Crit Care
, vol.11
, pp. R31
-
-
Mehta, R.L.1
Kellum, J.A.2
Shah, S.V.3
-
5
-
-
0036743104
-
Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients
-
Metnitz PG, Krenn CG, Steltzer H. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30:2051-2058.
-
(2002)
Crit Care Med
, vol.30
, pp. 2051-2058
-
-
Metnitz, P.G.1
Krenn, C.G.2
Steltzer, H.3
-
6
-
-
84988433881
-
Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: a prospective cohort study
-
De Corte W, Dhondt A, Vanholder R. Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: a prospective cohort study. Crit Care. 2016;20:256. doi:10.1186/s13054-016-1409-z.
-
(2016)
Crit Care
, vol.20
, pp. 256
-
-
De Corte, W.1
Dhondt, A.2
Vanholder, R.3
-
7
-
-
84941343997
-
Impact of compliance with a care bundle on acute kidney injury outcomes: a prospective observational study
-
Kolhe NV, Staples D, Reilly T. Impact of compliance with a care bundle on acute kidney injury outcomes: a prospective observational study. PLoS One. 2015;10(7):e0132279. doi:10.1371/journal.pone.0132279.
-
(2015)
PLoS One
, vol.10
, Issue.7
, pp. e0132279
-
-
Kolhe, N.V.1
Staples, D.2
Reilly, T.3
-
8
-
-
84884342549
-
Kidney Disease: Improving Global Outcomes (KDIGO) acute kidney injury work group KDIGO clinical practice guideline for acute kidney injury
-
Kellum JA, Lameire N, Aspelin P. Kidney Disease: Improving Global Outcomes (KDIGO) acute kidney injury work group KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1-138.
-
(2012)
Kidney Int Suppl
, vol.2
, pp. 1-138
-
-
Kellum, J.A.1
Lameire, N.2
Aspelin, P.3
-
9
-
-
0031783727
-
Treatment of acute renal failure
-
Star RA. Treatment of acute renal failure. Kidney Int. 1998;54(6):1817-1831.
-
(1998)
Kidney Int
, vol.54
, Issue.6
, pp. 1817-1831
-
-
Star, R.A.1
-
10
-
-
18844401341
-
Are small changes in serum creatinine an important risk factor?
-
Praught ML, Shlipak MG. Are small changes in serum creatinine an important risk factor? Curr Opin Nephrol Hypertens. 2005;14:265-270.
-
(2005)
Curr Opin Nephrol Hypertens
, vol.14
, pp. 265-270
-
-
Praught, M.L.1
Shlipak, M.G.2
-
11
-
-
4344692876
-
Spectrum of acute renal failure in the intensive care unit: the PICARD experience
-
Mehta RL, Pascual MT, Soroko S. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613-1621. doi:10.1111/j.1523-1755.2004.00927.x.
-
(2004)
Kidney Int
, vol.66
, Issue.4
, pp. 1613-1621
-
-
Mehta, R.L.1
Pascual, M.T.2
Soroko, S.3
-
12
-
-
34447628673
-
RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis
-
Hoste EAJ, Clermont G, Kersten A. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):R73. doi:10.1186/cc4915.
-
(2006)
Crit Care
, vol.10
, Issue.3
, pp. R73
-
-
Hoste, E.A.J.1
Clermont, G.2
Kersten, A.3
-
14
-
-
85010792818
-
AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin
-
Fletchet M, Guiza F, Chetz M. AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin. Intensive Care Med. 2017;43(6):764-773. doi:10.1007/s00134-017-4678-3.
-
(2017)
Intensive Care Med
, vol.43
, Issue.6
, pp. 764-773
-
-
Fletchet, M.1
Guiza, F.2
Chetz, M.3
-
15
-
-
85007609237
-
Prediction and detection models for acute kidney injury in hospitalized older adults
-
Kate RJ, Perez RM, Mazumdar D, Pasupathy KS, Nilakantan V. Prediction and detection models for acute kidney injury in hospitalized older adults. BMC Med Informat Decis Making. 2016;16:39. doi:10.1186/s12911-016-0277-4.
-
(2016)
BMC Med Informat Decis Making
, vol.16
, pp. 39
-
-
Kate, R.J.1
Perez, R.M.2
Mazumdar, D.3
Pasupathy, K.S.4
Nilakantan, V.5
-
16
-
-
84912088233
-
A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital
-
Porter CJ, Juurlink I, Bisset LH, Bavakunji R, Mehta RL, Devonald MA. A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital. Nephrol Dial Transplant. 2014;29(10):1888-1893. doi:10.1093/ndt/gfu082.
-
(2014)
Nephrol Dial Transplant
, vol.29
, Issue.10
, pp. 1888-1893
-
-
Porter, C.J.1
Juurlink, I.2
Bisset, L.H.3
Bavakunji, R.4
Mehta, R.L.5
Devonald, M.A.6
-
17
-
-
0030015661
-
The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine
-
Vincent JL, Moreno R, Takala J. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707-710. doi:10.1007/BF01709751.
-
(1996)
Intensive Care Med
, vol.22
, Issue.7
, pp. 707-710
-
-
Vincent, J.L.1
Moreno, R.2
Takala, J.3
-
18
-
-
0033863899
-
Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score
-
De Mendonca A, Vincent JL, Suter PM. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 2000;26:915-921.
-
(2000)
Intensive Care Med
, vol.26
, pp. 915-921
-
-
De Mendonca, A.1
Vincent, J.L.2
Suter, P.M.3
-
19
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
Johnson AEW, Pollard TJ, Shen L. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3: 160035. doi:10.1038/sdata.2016.35.
-
(2016)
Sci Data
, vol.3
, pp. 160035
-
-
Johnson, A.E.W.1
Pollard, T.J.2
Shen, L.3
-
20
-
-
85051798815
-
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. 2017
-
Mao Q, Jay M, Hoffman JL. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. 2017. BMJ Open. 2018;8(1):e017833.
-
(2018)
BMJ Open
, vol.8
, Issue.1
, pp. e017833
-
-
Mao, Q.1
Jay, M.2
Hoffman, J.L.3
-
21
-
-
85027938624
-
Standardizing the early identification of acute kidney injury: the NHS England national patient safety alert
-
Selby NM, Hill R, Fluck RJ. Standardizing the early identification of acute kidney injury: the NHS England national patient safety alert. Nephron. 2015; 131:113-117. doi:10.1159/000439146.
-
(2015)
Nephron
, vol.131
, pp. 113-117
-
-
Selby, N.M.1
Hill, R.2
Fluck, R.J.3
-
22
-
-
84873522208
-
Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). On behalf of the KDIGO guideline AKI group
-
Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). On behalf of the KDIGO guideline AKI group. Crit Care. 2013;17(1):204. doi:10.1186/cc11454.
-
(2013)
Crit Care
, vol.17
, Issue.1
, pp. 204
-
-
Kellum, J.A.1
Lameire, N.2
-
23
-
-
39349105563
-
The RIFLE criteria and mortality in acute kidney injury: a systematic review
-
Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 2008;73(5):538-546.
-
(2008)
Kidney Int
, vol.73
, Issue.5
, pp. 538-546
-
-
Ricci, Z.1
Cruz, D.2
Ronco, C.3
-
24
-
-
84896350295
-
Urinary catheter use and appropriateness in U.S. emergency departments, 1995-2010
-
Schuur JD, Chambers JG, Hou PC. Urinary catheter use and appropriateness in U.S. emergency departments, 1995-2010. Acad Emerg Med. 2014;21:292-300.
-
(2014)
Acad Emerg Med
, vol.21
, pp. 292-300
-
-
Schuur, J.D.1
Chambers, J.G.2
Hou, P.C.3
-
25
-
-
78649499055
-
A comparison of three methods to estimate baseline creatinine for RIFLE classification
-
Závada J, Hoste E, Cartin-Ceba R. A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant. 2010;25(12):3911-3918.
-
(2010)
Nephrol Dial Transplant
, vol.25
, Issue.12
, pp. 3911-3918
-
-
Závada, J.1
Hoste, E.2
Cartin-Ceba, R.3
-
26
-
-
84984950690
-
-
Paper presented at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016;; San Francisco, CA, USA
-
Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Paper presented at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; August 2016; San Francisco, CA, USA.
-
XGBoost: a scalable tree boosting system
-
-
Chen, T.1
Guestrin, C.2
-
27
-
-
67650495397
-
Derivation and validation of SpO2/FiO2 ratio to impute for PaO2/FiO2 ratio in the respiratory component of the Sequential Organ Failure Assessment (SOFA) Score
-
Pandharipande PP, Shintani AK, Hagerman HE. Derivation and validation of SpO2/FiO2 ratio to impute for PaO2/FiO2 ratio in the respiratory component of the Sequential Organ Failure Assessment (SOFA) Score. Crit Care Med. 2009;37(4):1317-1321. doi:10.1097/CCM.0b013e31819cefa9.
-
(2009)
Crit Care Med
, vol.37
, Issue.4
, pp. 1317-1321
-
-
Pandharipande, P.P.1
Shintani, A.K.2
Hagerman, H.E.3
-
28
-
-
84876296700
-
KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury
-
Palevsky PM, Liu KD, Brophy PD. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61(5):649-672.
-
(2013)
Am J Kidney Dis
, vol.61
, Issue.5
, pp. 649-672
-
-
Palevsky, P.M.1
Liu, K.D.2
Brophy, P.D.3
-
30
-
-
85018664128
-
Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach
-
Desautels T, Calvert J, Hoffman J. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Inform. 2016;4(3):e28.
-
(2016)
JMIR Med Inform
, vol.4
, Issue.3
, pp. e28
-
-
Desautels, T.1
Calvert, J.2
Hoffman, J.3
-
31
-
-
84969784621
-
High-performance detection and early prediction of septic shock for alcohol-use disorder patients
-
Calvert J, Desautels T, Chettipally U. High-performance detection and early prediction of septic shock for alcohol-use disorder patients. Ann Med Surg. 2016;8:50-55.
-
(2016)
Ann Med Surg
, vol.8
, pp. 50-55
-
-
Calvert, J.1
Desautels, T.2
Chettipally, U.3
-
32
-
-
85052147470
-
Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomized clinical trial
-
Shimabukuro D, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomized clinical trial. BMJ Open Respir Res. 2017;4:e000234.
-
(2017)
BMJ Open Respir Res
, vol.4
, pp. e000234
-
-
Shimabukuro, D.1
Barton, C.W.2
Feldman, M.D.3
Mataraso, S.J.4
Das, R.5
-
33
-
-
85044240544
-
Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units
-
McCoy A, Das R. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual. 2017;6:e000158. doi:10.1136/bmjoq-2017-000158.
-
(2017)
BMJ Open Qual
, vol.6
, pp. e000158
-
-
McCoy, A.1
Das, R.2
|