메뉴 건너뛰기




Volumn 5, Issue , 2018, Pages

Prediction of Acute Kidney Injury With a Machine Learning Algorithm Using Electronic Health Record Data

Author keywords

acute kidney injury; machine learning

Indexed keywords

ACUTE KIDNEY FAILURE; ADULT; AGED; ARTICLE; BREATHING RATE; CREATININE BLOOD LEVEL; DECISION TREE; ELECTRONIC HEALTH RECORD; EMERGENCY WARD; FEMALE; GLASGOW COMA SCALE; GOLD STANDARD; HEART RATE; HOSPITALIZATION; HUMAN; INTENSIVE CARE UNIT; KIDNEY INJURY; LEARNING ALGORITHM; LENGTH OF STAY; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; MIDDLE AGED; NATIONAL HEALTH SERVICE; PREDICTION; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; RETROSPECTIVE STUDY; SEQUENTIAL ORGAN FAILURE ASSESSMENT SCORE; TEMPERATURE; TREATMENT OUTCOME; YOUNG ADULT;

EID: 85061418276     PISSN: None     EISSN: 20543581     Source Type: Journal    
DOI: 10.1177/2054358118776326     Document Type: Article
Times cited : (114)

References (33)
  • 1
    • 44649128709 scopus 로고    scopus 로고
    • Diagnosis, epidemiology, and outcomes of acute kidney injury
    • Waikar SS, Liu KD, Chertow GM. Diagnosis, epidemiology, and outcomes of acute kidney injury. Clin J Am Soc Nephrol. 2008;3(3):844-861. doi:10.2215/CJN.05191107.
    • (2008) Clin J Am Soc Nephrol , vol.3 , Issue.3 , pp. 844-861
    • Waikar, S.S.1    Liu, K.D.2    Chertow, G.M.3
  • 2
    • 33644874086 scopus 로고    scopus 로고
    • Acute kidney injury, mortality, length of stay, and costs in hospitalized patients
    • Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365-3370. doi:10.1681/ASN.2004090740.
    • (2005) J Am Soc Nephrol , vol.16 , Issue.11 , pp. 3365-3370
    • Chertow, G.M.1    Burdick, E.2    Honour, M.3    Bonventre, J.V.4    Bates, D.W.5
  • 3
    • 85036542954 scopus 로고    scopus 로고
    • Cost of acute kidney injury in hospitalized patients
    • Silver SA, Long J, Zheng Y, Chertow GM. Cost of acute kidney injury in hospitalized patients. J Hosp Med. 2017;12(2):70-76.
    • (2017) J Hosp Med , vol.12 , Issue.2 , pp. 70-76
    • Silver, S.A.1    Long, J.2    Zheng, Y.3    Chertow, G.M.4
  • 4
    • 34247235247 scopus 로고    scopus 로고
    • Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury
    • Mehta RL, Kellum JA, Shah SV. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31. doi:10.1186/cc5713.
    • (2007) Crit Care , vol.11 , pp. R31
    • Mehta, R.L.1    Kellum, J.A.2    Shah, S.V.3
  • 5
    • 0036743104 scopus 로고    scopus 로고
    • Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients
    • Metnitz PG, Krenn CG, Steltzer H. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30:2051-2058.
    • (2002) Crit Care Med , vol.30 , pp. 2051-2058
    • Metnitz, P.G.1    Krenn, C.G.2    Steltzer, H.3
  • 6
    • 84988433881 scopus 로고    scopus 로고
    • Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: a prospective cohort study
    • De Corte W, Dhondt A, Vanholder R. Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: a prospective cohort study. Crit Care. 2016;20:256. doi:10.1186/s13054-016-1409-z.
    • (2016) Crit Care , vol.20 , pp. 256
    • De Corte, W.1    Dhondt, A.2    Vanholder, R.3
  • 7
    • 84941343997 scopus 로고    scopus 로고
    • Impact of compliance with a care bundle on acute kidney injury outcomes: a prospective observational study
    • Kolhe NV, Staples D, Reilly T. Impact of compliance with a care bundle on acute kidney injury outcomes: a prospective observational study. PLoS One. 2015;10(7):e0132279. doi:10.1371/journal.pone.0132279.
    • (2015) PLoS One , vol.10 , Issue.7 , pp. e0132279
    • Kolhe, N.V.1    Staples, D.2    Reilly, T.3
  • 8
    • 84884342549 scopus 로고    scopus 로고
    • Kidney Disease: Improving Global Outcomes (KDIGO) acute kidney injury work group KDIGO clinical practice guideline for acute kidney injury
    • Kellum JA, Lameire N, Aspelin P. Kidney Disease: Improving Global Outcomes (KDIGO) acute kidney injury work group KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1-138.
    • (2012) Kidney Int Suppl , vol.2 , pp. 1-138
    • Kellum, J.A.1    Lameire, N.2    Aspelin, P.3
  • 9
    • 0031783727 scopus 로고    scopus 로고
    • Treatment of acute renal failure
    • Star RA. Treatment of acute renal failure. Kidney Int. 1998;54(6):1817-1831.
    • (1998) Kidney Int , vol.54 , Issue.6 , pp. 1817-1831
    • Star, R.A.1
  • 10
    • 18844401341 scopus 로고    scopus 로고
    • Are small changes in serum creatinine an important risk factor?
    • Praught ML, Shlipak MG. Are small changes in serum creatinine an important risk factor? Curr Opin Nephrol Hypertens. 2005;14:265-270.
    • (2005) Curr Opin Nephrol Hypertens , vol.14 , pp. 265-270
    • Praught, M.L.1    Shlipak, M.G.2
  • 11
    • 4344692876 scopus 로고    scopus 로고
    • Spectrum of acute renal failure in the intensive care unit: the PICARD experience
    • Mehta RL, Pascual MT, Soroko S. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613-1621. doi:10.1111/j.1523-1755.2004.00927.x.
    • (2004) Kidney Int , vol.66 , Issue.4 , pp. 1613-1621
    • Mehta, R.L.1    Pascual, M.T.2    Soroko, S.3
  • 12
    • 34447628673 scopus 로고    scopus 로고
    • RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis
    • Hoste EAJ, Clermont G, Kersten A. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):R73. doi:10.1186/cc4915.
    • (2006) Crit Care , vol.10 , Issue.3 , pp. R73
    • Hoste, E.A.J.1    Clermont, G.2    Kersten, A.3
  • 14
    • 85010792818 scopus 로고    scopus 로고
    • AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin
    • Fletchet M, Guiza F, Chetz M. AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin. Intensive Care Med. 2017;43(6):764-773. doi:10.1007/s00134-017-4678-3.
    • (2017) Intensive Care Med , vol.43 , Issue.6 , pp. 764-773
    • Fletchet, M.1    Guiza, F.2    Chetz, M.3
  • 16
    • 84912088233 scopus 로고    scopus 로고
    • A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital
    • Porter CJ, Juurlink I, Bisset LH, Bavakunji R, Mehta RL, Devonald MA. A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital. Nephrol Dial Transplant. 2014;29(10):1888-1893. doi:10.1093/ndt/gfu082.
    • (2014) Nephrol Dial Transplant , vol.29 , Issue.10 , pp. 1888-1893
    • Porter, C.J.1    Juurlink, I.2    Bisset, L.H.3    Bavakunji, R.4    Mehta, R.L.5    Devonald, M.A.6
  • 17
    • 0030015661 scopus 로고    scopus 로고
    • The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine
    • Vincent JL, Moreno R, Takala J. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707-710. doi:10.1007/BF01709751.
    • (1996) Intensive Care Med , vol.22 , Issue.7 , pp. 707-710
    • Vincent, J.L.1    Moreno, R.2    Takala, J.3
  • 18
    • 0033863899 scopus 로고    scopus 로고
    • Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score
    • De Mendonca A, Vincent JL, Suter PM. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 2000;26:915-921.
    • (2000) Intensive Care Med , vol.26 , pp. 915-921
    • De Mendonca, A.1    Vincent, J.L.2    Suter, P.M.3
  • 19
    • 84971287198 scopus 로고    scopus 로고
    • MIMIC-III, a freely accessible critical care database
    • Johnson AEW, Pollard TJ, Shen L. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3: 160035. doi:10.1038/sdata.2016.35.
    • (2016) Sci Data , vol.3 , pp. 160035
    • Johnson, A.E.W.1    Pollard, T.J.2    Shen, L.3
  • 20
    • 85051798815 scopus 로고    scopus 로고
    • Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. 2017
    • Mao Q, Jay M, Hoffman JL. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. 2017. BMJ Open. 2018;8(1):e017833.
    • (2018) BMJ Open , vol.8 , Issue.1 , pp. e017833
    • Mao, Q.1    Jay, M.2    Hoffman, J.L.3
  • 21
    • 85027938624 scopus 로고    scopus 로고
    • Standardizing the early identification of acute kidney injury: the NHS England national patient safety alert
    • Selby NM, Hill R, Fluck RJ. Standardizing the early identification of acute kidney injury: the NHS England national patient safety alert. Nephron. 2015; 131:113-117. doi:10.1159/000439146.
    • (2015) Nephron , vol.131 , pp. 113-117
    • Selby, N.M.1    Hill, R.2    Fluck, R.J.3
  • 22
    • 84873522208 scopus 로고    scopus 로고
    • Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). On behalf of the KDIGO guideline AKI group
    • Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). On behalf of the KDIGO guideline AKI group. Crit Care. 2013;17(1):204. doi:10.1186/cc11454.
    • (2013) Crit Care , vol.17 , Issue.1 , pp. 204
    • Kellum, J.A.1    Lameire, N.2
  • 23
    • 39349105563 scopus 로고    scopus 로고
    • The RIFLE criteria and mortality in acute kidney injury: a systematic review
    • Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 2008;73(5):538-546.
    • (2008) Kidney Int , vol.73 , Issue.5 , pp. 538-546
    • Ricci, Z.1    Cruz, D.2    Ronco, C.3
  • 24
    • 84896350295 scopus 로고    scopus 로고
    • Urinary catheter use and appropriateness in U.S. emergency departments, 1995-2010
    • Schuur JD, Chambers JG, Hou PC. Urinary catheter use and appropriateness in U.S. emergency departments, 1995-2010. Acad Emerg Med. 2014;21:292-300.
    • (2014) Acad Emerg Med , vol.21 , pp. 292-300
    • Schuur, J.D.1    Chambers, J.G.2    Hou, P.C.3
  • 25
    • 78649499055 scopus 로고    scopus 로고
    • A comparison of three methods to estimate baseline creatinine for RIFLE classification
    • Závada J, Hoste E, Cartin-Ceba R. A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant. 2010;25(12):3911-3918.
    • (2010) Nephrol Dial Transplant , vol.25 , Issue.12 , pp. 3911-3918
    • Závada, J.1    Hoste, E.2    Cartin-Ceba, R.3
  • 26
    • 84984950690 scopus 로고    scopus 로고
    • Paper presented at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016;; San Francisco, CA, USA
    • Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Paper presented at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; August 2016; San Francisco, CA, USA.
    • XGBoost: a scalable tree boosting system
    • Chen, T.1    Guestrin, C.2
  • 27
    • 67650495397 scopus 로고    scopus 로고
    • Derivation and validation of SpO2/FiO2 ratio to impute for PaO2/FiO2 ratio in the respiratory component of the Sequential Organ Failure Assessment (SOFA) Score
    • Pandharipande PP, Shintani AK, Hagerman HE. Derivation and validation of SpO2/FiO2 ratio to impute for PaO2/FiO2 ratio in the respiratory component of the Sequential Organ Failure Assessment (SOFA) Score. Crit Care Med. 2009;37(4):1317-1321. doi:10.1097/CCM.0b013e31819cefa9.
    • (2009) Crit Care Med , vol.37 , Issue.4 , pp. 1317-1321
    • Pandharipande, P.P.1    Shintani, A.K.2    Hagerman, H.E.3
  • 28
    • 84876296700 scopus 로고    scopus 로고
    • KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury
    • Palevsky PM, Liu KD, Brophy PD. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61(5):649-672.
    • (2013) Am J Kidney Dis , vol.61 , Issue.5 , pp. 649-672
    • Palevsky, P.M.1    Liu, K.D.2    Brophy, P.D.3
  • 30
    • 85018664128 scopus 로고    scopus 로고
    • Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach
    • Desautels T, Calvert J, Hoffman J. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Inform. 2016;4(3):e28.
    • (2016) JMIR Med Inform , vol.4 , Issue.3 , pp. e28
    • Desautels, T.1    Calvert, J.2    Hoffman, J.3
  • 31
    • 84969784621 scopus 로고    scopus 로고
    • High-performance detection and early prediction of septic shock for alcohol-use disorder patients
    • Calvert J, Desautels T, Chettipally U. High-performance detection and early prediction of septic shock for alcohol-use disorder patients. Ann Med Surg. 2016;8:50-55.
    • (2016) Ann Med Surg , vol.8 , pp. 50-55
    • Calvert, J.1    Desautels, T.2    Chettipally, U.3
  • 32
    • 85052147470 scopus 로고    scopus 로고
    • Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomized clinical trial
    • Shimabukuro D, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomized clinical trial. BMJ Open Respir Res. 2017;4:e000234.
    • (2017) BMJ Open Respir Res , vol.4 , pp. e000234
    • Shimabukuro, D.1    Barton, C.W.2    Feldman, M.D.3    Mataraso, S.J.4    Das, R.5
  • 33
    • 85044240544 scopus 로고    scopus 로고
    • Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units
    • McCoy A, Das R. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual. 2017;6:e000158. doi:10.1136/bmjoq-2017-000158.
    • (2017) BMJ Open Qual , vol.6 , pp. e000158
    • McCoy, A.1    Das, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.