메뉴 건너뛰기




Volumn 19, Issue 2, 2010, Pages 263-282

Pattern classification with missing data: A review

Author keywords

Machine learning; Missing data; Neural networks; Pattern classification

Indexed keywords

BIOMETRIC RECOGNITION; DOCUMENT CLASSIFICATION; HANDLING MISSING VALUES; MACHINE LEARNING APPROACHES; MISSING DATA; MISSING DATA PROBLEM; PATTERN RECOGNITION TECHNIQUES; STATISTICAL LEARNING THEORY;

EID: 79952229665     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-009-0295-6     Document Type: Article
Times cited : (672)

References (83)
  • 8
    • 0004093524 scopus 로고    scopus 로고
    • Thousan Oaks, California
    • Allison PD (2001) Missing data. Sage university papers series on quantitative applications in the social sciences. Thousan Oaks, California
    • (2001) Missing data
    • Allison, P.D.1
  • 10
    • 84993791796 scopus 로고    scopus 로고
    • Missing data in disguise and implications for survey data analysis
    • Wang L, Fan X (2004) Missing data in disguise and implications for survey data analysis. Field Methods 16(3):332-351
    • (2004) Field Methods , vol.16 , Issue.3 , pp. 332-351
    • Wang, L.1    Fan, X.2
  • 12
  • 13
    • 0034447131 scopus 로고    scopus 로고
    • Measurement-based network monitoring: Missing data formulation and scalability analysis
    • Sorrento, Italy
    • Ji C, Elwalid A (2000) Measurement-based network monitoring: missing data formulation and scalability analysis. IEEE Int Symp Inf Theory, Sorrento, Italy, p 78
    • (2000) IEEE Int Symp Inf Theory , pp. 78
    • Ji, C.1    Elwalid, A.2
  • 15
    • 33751063627 scopus 로고    scopus 로고
    • An ensemble technique to handle missing data from sensors
    • In:, Houston, Texas, USA
    • Mohammed HS, Stepenosky N, Polikar R (2006) An ensemble technique to handle missing data from sensors. In: IEEE Sens Appl Symp, Houston, Texas, USA, pp 101-105
    • (2006) IEEE Sens Appl Symp , pp. 101-105
    • Mohammed, H.S.1    Stepenosky, N.2    Polikar, R.3
  • 17
    • 4544354701 scopus 로고    scopus 로고
    • Speech enhancement with missing data techniques using recurrent neural networks
    • Parveen S, Green P (2004) Speech enhancement with missing data techniques using recurrent neural networks. In: IEEE ICASSP, vol 1, pp 733-736
    • (2004) IEEE ICASSP , vol.1 , pp. 733-736
    • Parveen, S.1    Green, P.2
  • 19
    • 38549091215 scopus 로고    scopus 로고
    • Using multiple imputation in the analysis of incomplete observations in finance
    • Sharpe IG, Kofman P (2003) Using multiple imputation in the analysis of incomplete observations in finance. J Financ Econ 1(2):216-249
    • (2003) J Financ Econ , vol.1 , Issue.2 , pp. 216-249
    • Sharpe, I.G.1    Kofman, P.2
  • 23
    • 21244439905 scopus 로고    scopus 로고
    • Impact of missing data in training artificial neural networks for computer-aided diagnosis
    • Markey MK, Patel A (2004) Impact of missing data in training artificial neural networks for computer-aided diagnosis. In: Proc Int Conf Mach Learn Appl, pp 351-354
    • (2004) Proc Int Conf Mach Learn Appl , pp. 351-354
    • Markey, M.K.1    Patel, A.2
  • 27
    • 61849118651 scopus 로고    scopus 로고
    • A study of K-nearest neighbour as an imputation method
    • Abraham A et al (eds)
    • Batista G, Monard MC (2002) A study of K-nearest neighbour as an imputation method. In: Abraham A et al (eds) Hybrid Intell Syst, Ser Front Artif Intell Appl 87, IOS Press, pp 251-260
    • (2002) Hybrid Intell Syst , pp. 251-260
    • Batista, G.1    Monard, M.C.2
  • 29
    • 0002081757 scopus 로고
    • Self-organization with partial data
    • Samad T, Harp SA (1992) Self-organization with partial data. Netw Computat Neural Syst 3(2):205-212
    • (1992) Netw Computat Neural Syst , vol.3 , Issue.2 , pp. 205-212
    • Samad, T.1    Harp, S.A.2
  • 30
    • 23044533360 scopus 로고    scopus 로고
    • Self-organizing map for data imputation and correction in surveys
    • Fessant F, Midenet S (2002) Self-organizing map for data imputation and correction in surveys. Neural Comput Appl 10(4): 300-310
    • (2002) Neural Comput Appl , vol.10 , Issue.4 , pp. 300-310
    • Fessant, F.1    Midenet, S.2
  • 31
    • 77957144426 scopus 로고    scopus 로고
    • Introduction to self-organizing maps modelling for imputation-techniques and technology
    • Piela P (2002) Introduction to self-organizing maps modelling for imputation-techniques and technology. Res Stat Note Health Care Financ Adm Off Policy Plan Res 2:5-19
    • (2002) Res Stat Note Health Care Financ Adm Off Policy Plan Res , vol.2 , pp. 5-19
    • Piela, P.1
  • 32
    • 0002812717 scopus 로고
    • Dealing with missing values in neural network-based diagnostic systems
    • Sharpe PK, Solly RJ (1995) Dealing with missing values in neural network-based diagnostic systems. Neural Comput Appl 3(2):73-77
    • (1995) Neural Comput Appl , vol.3 , Issue.2 , pp. 73-77
    • Sharpe, P.K.1    Solly, R.J.2
  • 33
    • 0043007739 scopus 로고    scopus 로고
    • Neural network imputation applied to the Norwegian 1990 population census data
    • Nordbotten S (1996) Neural network imputation applied to the Norwegian 1990 population census data. J Off Stat 12:385-401
    • (1996) J Off Stat , vol.12 , pp. 385-401
    • Nordbotten, S.1
  • 34
    • 0030085894 scopus 로고    scopus 로고
    • Estimating missing values using neural networks
    • Gupta A, Lam MS (1996) Estimating missing values using neural networks. J Oper Res Soc 47(2):229-238
    • (1996) J Oper Res Soc , vol.47 , Issue.2 , pp. 229-238
    • Gupta, A.1    Lam, M.S.2
  • 35
    • 0033350105 scopus 로고    scopus 로고
    • Training algorithm with incomplete data for feed-forward neural networks
    • Yoon SY, Lee SY (1999) Training algorithm with incomplete data for feed-forward neural networks. Neural Process Lett 10:171-179
    • (1999) Neural Process Lett , vol.10 , pp. 171-179
    • Yoon, S.Y.1    Lee, S.Y.2
  • 37
    • 85156252604 scopus 로고
    • Recurrent neural networks for missing or asynchronous data
    • In: Touretzky DS et al (eds, MIT Press
    • Bengio Y, Gingras F (1995) Recurrent neural networks for missing or asynchronous data. In: Touretzky DS et al (eds) Adv Neural Inf Process Syst 8. MIT Press, pp 395-401
    • (1995) Adv Neural Inf Process Syst , vol.8 , pp. 395-401
    • Bengio, Y.1    Gingras, F.2
  • 40
    • 0036080008 scopus 로고    scopus 로고
    • Set constraint discovery: Missing sensor data restoration using auto-associative regression machines
    • In:, Honolulu
    • Narayanan S, Vian JL, Choi J, El-Sharkawi M, Thompson BB (2002) Set constraint discovery: missing sensor data restoration using auto-associative regression machines. In: Proc Int Jt Conf Neural Netw, Honolulu, pp 2872-2877
    • (2002) Proc Int Jt Conf Neural Netw , pp. 2872-2877
    • Narayanan, S.1    Vian, J.L.2    Choi, J.3    El-Sharkawi, M.4    Thompson, B.B.5
  • 42
    • 19844365583 scopus 로고    scopus 로고
    • The autoassociative neural network in signal analysis. II. Application to on-line monitoring of a simulated BWR component
    • Marseguerra M, Zoia A (2005) The autoassociative neural network in signal analysis. II. Application to on-line monitoring of a simulated BWR component. Ann Nuclear Energy 32(11):1207-1223
    • (2005) Ann Nuclear Energy , vol.32 , Issue.11 , pp. 1207-1223
    • Marseguerra, M.1    Zoia, A.2
  • 43
    • 33644880300 scopus 로고    scopus 로고
    • Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm
    • Marwala T, Chakraverty S (2006) Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm. Curr Sci India 90(4):542-548
    • (2006) Curr Sci India , vol.90 , Issue.4 , pp. 542-548
    • Marwala, T.1    Chakraverty, S.2
  • 44
    • 0031189914 scopus 로고    scopus 로고
    • Ph.D. dissertation, Carnegie Mellon University
    • Caruana R (1997) Multitask learning. Ph.D. dissertation, Carnegie Mellon University
    • (1997) Multitask learning
    • Caruana, R.1
  • 48
    • 0001551844 scopus 로고
    • Supervised learning from incomplete data via an EM approach
    • Cowan JD et al (eds), In:, Morgan Kaufmann Publishers Inc
    • Ghahramani Z, Jordan MI (1994) Supervised learning from incomplete data via an EM approach. In: Cowan JD et al (eds) Adv Neural Inf Process Syst 6, Morgan Kaufmann Publishers Inc., pp 120-127
    • (1994) Adv Neural Inf Process Syst , vol.6 , pp. 120-127
    • Ghahramani, Z.1    Jordan, M.I.2
  • 49
    • 0012999549 scopus 로고
    • Tech. Rep. AIM-1509, Massachusetts Institute of Technology, Cambridge, MA, USA
    • Ghahramani Z, Jordan MI (1994) Learning from incomplete data. Tech. Rep. AIM-1509, Massachusetts Institute of Technology, Cambridge, MA, USA
    • (1994) Learning from incomplete data
    • Ghahramani, Z.1    Jordan, M.I.2
  • 51
    • 0000652102 scopus 로고
    • Some solutions to the missing feature problem in vision
    • In:, Morgan Kaufmann Publishers Inc., San Mateo, CA, USA
    • Ahmad S, Tresp V (1993) Some solutions to the missing feature problem in vision. In: Adv Neural Inf Process Syst 5, Morgan Kaufmann Publishers Inc., San Mateo, CA, USA, pp 393-400
    • (1993) Adv Neural Inf Process Syst , vol.5 , pp. 393-400
    • Ahmad, S.1    Tresp, V.2
  • 52
    • 0000684508 scopus 로고
    • Training neural networks with deficient data
    • In: Cowan JD et al (eds, Morgan Kaufmann Publishers Inc., San Francisco
    • Tresp V, Ahmad S, Neuneier R (1993) Training neural networks with deficient data. In: Cowan JD et al (eds) Adv Neural Inf Process Syst 6. Morgan Kaufmann Publishers Inc., San Francisco, pp 128-135
    • (1993) Adv Neural Inf Process Syst , vol.6 , pp. 128-135
    • Tresp, V.1    Ahmad, S.2    Neuneier, R.3
  • 53
    • 85153928966 scopus 로고
    • Efficientmethods for dealing with missing data in supervised learning
    • Tesauro G et al (eds), In:, The MIT Press
    • Tresp V, Neuneier R, Ahmad S (1994) Efficientmethods for dealing with missing data in supervised learning. In: Tesauro G et al (eds) Adv Neural Inf Process Syst 7, The MIT Press, pp 689-696
    • (1994) Adv Neural Inf Process Syst , vol.7 , pp. 689-696
    • Tresp, V.1    Neuneier, R.2    Ahmad, S.3
  • 55
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • Ramoni M, Sebastiani P (2001) Robust learning with missing data. Mach Learn 45:147-170
    • (2001) Mach Learn , vol.45 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 56
    • 0141684717 scopus 로고    scopus 로고
    • An ensemble of classifiers for the missing feature problem
    • In:, Portland, USA
    • Krause S, Polikar R (2003) An ensemble of classifiers for the missing feature problem. In: Proc Intl Jt Conf Neural Netw, Portland, USA, pp 553-558
    • (2003) Proc Intl Jt Conf Neural Netw , pp. 553-558
    • Krause, S.1    Polikar, R.2
  • 57
    • 33847173765 scopus 로고    scopus 로고
    • Classification for incomplete data using classifier ensembles
    • Jian K, Chen H, Yuan S (2005) Classification for incomplete data using classifier ensembles. In: Proc Intl Conf Neural Netw Brain, pp 559-563
    • (2005) Proc Intl Conf Neural Netw Brain , pp. 559-563
    • Jian, K.1    Chen, H.2    Yuan, S.3
  • 58
    • 35048859747 scopus 로고    scopus 로고
    • Combining one-class classifiers to classify missing data
    • Roli F et al (eds), In:, Lect Notes Comput Sci 3077, Springer
    • Juszczak P, Duin RPW (2004) Combining one-class classifiers to classify missing data. In: Roli F et al (eds) Mult Classif Syst, Lect Notes Comput Sci 3077, Springer, pp 92-101
    • (2004) Mult Classif Syst , pp. 92-101
    • Juszczak, P.1    Duin, R.P.W.2
  • 59
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81-106
    • (1986) Mach Learn , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 61
    • 85023557988 scopus 로고
    • Unknown attribute values in induction
    • In:, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • Quinlan JR (1989) Unknown attribute values in induction. In: Proc Intl Workshop Mach Learn, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 164-168
    • (1989) Proc Intl Workshop Mach Learn , pp. 164-168
    • Quinlan, J.R.1
  • 62
    • 84947911509 scopus 로고    scopus 로고
    • The problem of missing values in decision tree grafting
    • In:, Springer
    • Webb GI (1998) The problem of missing values in decision tree grafting. In: Proc Aust Jt Conf Artif Intell, Springer, pp 273-283
    • (1998) Proc Aust Jt Conf Artif Intell , pp. 273-283
    • Webb, G.I.1
  • 63
    • 33746026646 scopus 로고    scopus 로고
    • Classifying unseen cases with many missing values
    • Zhong N, In:, Zhou L (eds) Lect Notes Art Intell 1574, Springer
    • Zheng Z, Low BT (1999) Classifying unseen cases with many missing values. In: Zhong N, Zhou L (eds) Pac Asia Conf Knowl Discov Data Min, Lect Notes Art Intell 1574, Springer, pp 370-374
    • (1999) Pac Asia Conf Knowl Discov Data Min , pp. 370-374
    • Zheng, Z.1    Low, B.T.2
  • 64
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P, Niblett T (1989) The CN2 induction algorithm. Mach Learn 3(4):261-283
    • (1989) Mach Learn , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 66
    • 0029543721 scopus 로고
    • Classification of fuzzy input patterns by neural networks
    • In:, Perth, WA, Australia
    • Ishibuchi H, Moriola K (1995) Classification of fuzzy input patterns by neural networks. In: Proc IEEE Intl Conf Neural Netw, Perth, WA, Australia, pp 3118-3123
    • (1995) Proc IEEE Intl Conf Neural Netw , pp. 3118-3123
    • Ishibuchi, H.1    Moriola, K.2
  • 67
    • 0026304916 scopus 로고
    • An extension of the BP-algorithm to interval input vectors-learning from numerical data and expert's knowledge
    • Ishibuchi H, Tanaka H (1991) An extension of the BP-algorithm to interval input vectors-learning from numerical data and expert's knowledge. In: Proc IEEE Intl Jt Conf Neural Netw, pp 1588-1593
    • (1991) Proc IEEE Intl Jt Conf Neural Netw , pp. 1588-1593
    • Ishibuchi, H.1    Tanaka, H.2
  • 68
    • 12844277089 scopus 로고    scopus 로고
    • A neuro-fuzzy model for missing data reconstruction
    • In:, St. Paul, MN, USA
    • Petit-Renaud S, Denux T (1998) A neuro-fuzzy model for missing data reconstruction. In: Proc IEEE Workshop Emerg Technol, St. Paul, MN, USA
    • (1998) Proc IEEE Workshop Emerg Technol
    • Petit-Renaud, S.1    Denux, T.2
  • 70
    • 0036732448 scopus 로고    scopus 로고
    • Neuro-fuzzy approach to processing inputs with missing values in pattern recognition problems
    • Gabrys B (2002) Neuro-fuzzy approach to processing inputs with missing values in pattern recognition problems. Int J Approx Reason 30(3):149-179
    • (2002) Int J Approx Reason , vol.30 , Issue.3 , pp. 149-179
    • Gabrys, B.1
  • 73
    • 0010402688 scopus 로고    scopus 로고
    • Learning in neuro-fuzzy systems with symbolic attributes and missing values
    • In:, Perth, WA, Australia
    • Nauck D, Kruse R (1999) Learning in neuro-fuzzy systems with symbolic attributes and missing values. In: Proc 6th Intl Conf Neural Inf Process, Perth, WA, Australia, pp 142-147
    • (1999) Proc 6th Intl Conf Neural Inf Process , pp. 142-147
    • Nauck, D.1    Kruse, R.2
  • 75
    • 33845249633 scopus 로고    scopus 로고
    • Fuzzy c-means classifier for incomplete data sets with outliers and missing values
    • In:, IEEE Computer Society, Washington, DC, USA
    • Ichihashi H, Honda K (2005) Fuzzy c-means classifier for incomplete data sets with outliers and missing values. In: Proc Intl Conf Comput Intell Modell Control Autom, IEEE Computer Society, Washington, DC, USA, pp 457-464
    • (2005) Proc Intl Conf Comput Intell Modell Control Autom , pp. 457-464
    • Ichihashi, H.1    Honda, K.2
  • 76
    • 0035749064 scopus 로고    scopus 로고
    • Fuzzy k-means clustering with missing values
    • Sarkar M, Leong TY (2001) Fuzzy k-means clustering with missing values. In: Proc AMIA Annu Symp, pp 588-592
    • (2001) Proc AMIA Annu Symp , pp. 588-592
    • Sarkar, M.1    Leong, T.Y.2
  • 77
    • 17144402563 scopus 로고    scopus 로고
    • A hybrid neural network system for pattern classification tasks with missing features
    • Lim CP, Leong JH, Kuan MM (2005) A hybrid neural network system for pattern classification tasks with missing features. IEEE Trans Pattern Anal Mach Intell 27(4):648-653
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.4 , pp. 648-653
    • Lim, C.P.1    Leong, J.H.2    Kuan, M.M.3
  • 78
    • 33745779142 scopus 로고    scopus 로고
    • A second order cone programming formulation for classifying missing data
    • In: Saul LK et al (eds, MIT Press, Cambridge
    • Bhattacharyya C, Shivaswamy PK, Smola AJ (2004) A second order cone programming formulation for classifying missing data. In: Saul LK et al (eds) Adv Neural Inf Process Syst 17. MIT Press, Cambridge, pp 153-160
    • (2004) Adv Neural Inf Process Syst , vol.17 , pp. 153-160
    • Bhattacharyya, C.1    Shivaswamy, P.K.2    Smola, A.J.3
  • 79
    • 84862623799 scopus 로고    scopus 로고
    • Kernel methods for missing variables
    • In: Ghahramani Z, Cowell R (eds, Society for artificial intelligence and statistics
    • Smola AJ, Vishwanathan S, Hofmann T (2005) Kernel methods for missing variables. In: Ghahramani Z, Cowell R (eds) Proc AISTATS'05. Society for artificial intelligence and statistics, pp 325-332
    • (2005) Proc AISTATS'05 , pp. 325-332
    • Smola, A.J.1    Vishwanathan, S.2    Hofmann, T.3
  • 80
    • 27744579949 scopus 로고    scopus 로고
    • Handling missing values in support vector machine classifiers
    • Pelckmans K, Brabanter JD, Suykens JAK, Moor BD (2005) Handling missing values in support vector machine classifiers. Neural Netw 18(5-6):684-692
    • (2005) Neural Netw , vol.18 , Issue.5-6 , pp. 684-692
    • Pelckmans, K.1    Brabanter, J.D.2    Suykens, J.A.K.3    Moor, B.D.4
  • 81
    • 84898996224 scopus 로고    scopus 로고
    • Support vector classification with input data uncertainty
    • In: Saul LK et al (eds, MIT Press, Cambridge
    • Bi J, Zhang T (2005) Support vector classification with input data uncertainty. In: Saul LK et al (eds) Adv Neural Inf Process Syst 17. MIT Press, Cambridge, pp 161-168
    • (2005) Adv Neural Inf Process Syst , vol.17 , pp. 161-168
    • Bi, J.1    Zhang, T.2
  • 82
    • 56549083909 scopus 로고    scopus 로고
    • Max-margin classification with incomplete data
    • In: Schölkopf B et al (eds, MIT Press, Cambridge
    • Chechik G, Heitz G, Elidan H, Abbeel P, Koller D (2007) Max-margin classification with incomplete data. In: Schölkopf B et al (eds) Adv Neural Inf Process Syst 19. MIT Press, Cambridge, pp 233-240
    • (2007) Adv Neural Inf Process Syst , vol.19 , pp. 233-240
    • Chechik, G.1    Heitz, G.2    Elidan, H.3    Abbeel, P.4    Koller, D.5
  • 83
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on Parzen window
    • Kwak N, Choi C-H (2002) Input feature selection by mutual information based on Parzen window. IEEE Trans Pattern Anal Mach Intell 24(12):1667-1671
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.