-
1
-
-
84990030923
-
A discriminative framework for anomaly detection in large videos
-
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.), Springer, Cham
-
Del Giorno, A., Bagnell, J.A., Hebert, M.: A discriminative framework for anomaly detection in large videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 334-349. Springer, Cham (2016). doi:10.1007/978-3-319-46454-1_21
-
(2016)
ECCV 2016. LNCS
, vol.9909
, pp. 334-349
-
-
Del Giorno, A.1
Bagnell, J.A.2
Hebert, M.3
-
2
-
-
84905921087
-
An overview of background modeling for detection of targets and anomalies in hyperspectral remotely sensed imagery
-
Matteoli, S., Diani, M., Theiler, J.: An overview of background modeling for detection of targets and anomalies in hyperspectral remotely sensed imagery. IEEE J. Selected Top. Appl. Earth Obs. Remote Sens. 7(6), 2317-2336 (2014)
-
(2014)
IEEE J. Selected Top. Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.6
, pp. 2317-2336
-
-
Matteoli, S.1
Diani, M.2
Theiler, J.3
-
3
-
-
84951164907
-
Detecting anomalous structures by convolutional sparse models
-
Carrera, D., Boracchi, G., Foi, A., Wohlberg, B.: Detecting anomalous structures by convolutional sparse models. In: 2015 International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1-8 (2015)
-
(2015)
2015 International Joint Conference on Neural Networks (IJCNN), IEEE
, pp. 1-8
-
-
Carrera, D.1
Boracchi, G.2
Foi, A.3
Wohlberg, B.4
-
4
-
-
84992311617
-
High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
-
Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 58, 121-134 (2016)
-
(2016)
Pattern Recognit.
, vol.58
, pp. 121-134
-
-
Erfani, S.M.1
Rajasegarar, S.2
Karunasekera, S.3
Leckie, C.4
-
5
-
-
84893296219
-
A review of novelty detection
-
Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215-249 (2014)
-
(2014)
Signal Process.
, vol.99
, pp. 215-249
-
-
Pimentel, M.A.1
Clifton, D.A.2
Clifton, L.3
Tarassenko, L.4
-
6
-
-
84948808495
-
Automated age-related macular degeneration classification in OCT using unsupervised feature learning
-
Venhuizen, F.G., van Ginneken, B., Bloemen, B., van Grinsven, M.J., Philipsen, R., Hoyng, C., Theelen, T., Sánchez, C.I.: Automated age-related macular degeneration classification in OCT using unsupervised feature learning. In: SPIE Medical Imaging, International Society for Optics and Photonics, p. 94141I (2015)
-
(2015)
SPIE Medical Imaging, International Society for Optics and Photonics
, pp. 94141
-
-
Venhuizen, F.G.1
van Ginneken, B.2
Bloemen, B.3
van Grinsven, M.J.4
Philipsen, R.5
Hoyng, C.6
Theelen, T.7
Sánchez, C.I.8
-
7
-
-
84983548350
-
Predicting semantic descriptions from medical images with convolutional neural networks
-
Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.), Springer, Cham
-
Schlegl, T., Waldstein, S.M., Vogl, W.-D., Schmidt-Erfurth, U., Langs, G.: Predicting semantic descriptions from medical images with convolutional neural networks. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 437-448. Springer, Cham (2015). doi:10.1007/978-3-319-19992-434
-
(2015)
IPMI 2015. LNCS
, vol.9123
, pp. 437-448
-
-
Schlegl, T.1
Waldstein, S.M.2
Vogl, W.-D.3
Schmidt-Erfurth, U.4
Langs, G.5
-
8
-
-
85020551957
-
Identifying and categorizing anomalies in retinal imaging data
-
Preprint arXiv:1612.00686
-
Seeböck, P., Waldstein, S., Klimscha, S., Gerendas, B.S., Donner, R., Schlegl, T., Schmidt-Erfurth, U., Langs, G.: Identifying and categorizing anomalies in retinal imaging data. In: NIPS 2016 MLHC Workshop. Preprint arXiv:1612.00686 (2016)
-
(2016)
NIPS 2016 MLHC Workshop
-
-
Seeböck, P.1
Waldstein, S.2
Klimscha, S.3
Gerendas, B.S.4
Donner, R.5
Schlegl, T.6
Schmidt-Erfurth, U.7
Langs, G.8
-
9
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672-2680 (2014)
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
10
-
-
84965143571
-
Deep generative image models using a Laplacian pyramid of adversarial networks
-
Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486-1494 (2015)
-
(2015)
Advances in Neural Information Processing Systems
, pp. 1486-1494
-
-
Denton, E.L.1
Chintala, S.2
Fergus, R.3
-
13
-
-
85013877252
-
-
arXiv:1607.07539
-
Yeh, R., Chen, C., Lim, T.Y., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with perceptual and contextual losses. arXiv:1607.07539 (2016)
-
(2016)
Semantic image inpainting with perceptual and contextual losses
-
-
Yeh, R.1
Chen, C.2
Lim, T.Y.3
Hasegawa-Johnson, M.4
Do, M.N.5
-
14
-
-
85018875486
-
Improved techniques for training GANs
-
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2226-2234 (2016)
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2226-2234
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
15
-
-
73849122331
-
Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images
-
Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.:Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436-1447 (2009)
-
(2009)
IEEE Trans. Med. Imaging
, vol.28
, Issue.9
, pp. 1436-1447
-
-
Garvin, M.K.1
Abramoff, M.D.2
Wu, X.3
Russell, S.R.4
Burns, T.L.5
Sonka, M.6
-
16
-
-
84990036610
-
-
CoRR abs/1604.07379
-
Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature learning by inpainting. CoRR abs/1604.07379 (2016)
-
(2016)
Context encoders: Feature learning by inpainting
-
-
Pathak, D.1
Krähenbühl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.A.5
-
18
-
-
84958264664
-
-
Software available from
-
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from http://www.tensorflow.org
-
(2015)
TensorFlow: Large-scale machine learning on heterogeneous systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.16
Jozefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Mané, D.21
Monga, R.22
Moore, S.23
Murray, D.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.31
Vanhoucke, V.32
Vasudevan, V.33
Viégas, F.34
Vinyals, O.35
Warden, P.36
Wattenberg, M.37
Wicke, M.38
Yu, Y.39
Zheng, X.40
more..
|