메뉴 건너뛰기




Volumn 59, Issue , 2015, Pages 125-133

Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values

Author keywords

5 year survival prediction; Breast cancer; Discrete data; Imputation; Missing data

Indexed keywords

ARTIFICIAL INTELLIGENCE; DISEASES; FORECASTING; LEARNING SYSTEMS; MAXIMUM PRINCIPLE; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH;

EID: 84923379438     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2015.02.006     Document Type: Article
Times cited : (135)

References (45)
  • 2
    • 0024601059 scopus 로고
    • Prediction of relapse or survival in patients with node-negative breast cancer by dna flow cytometry
    • Clark G.M., Dressler L.G., Owens M.A., Pounds G., Oldaker T., McGuire W.L. Prediction of relapse or survival in patients with node-negative breast cancer by dna flow cytometry. New Engl. J. Med. 1989, 320:627-633.
    • (1989) New Engl. J. Med. , vol.320 , pp. 627-633
    • Clark, G.M.1    Dressler, L.G.2    Owens, M.A.3    Pounds, G.4    Oldaker, T.5    McGuire, W.L.6
  • 3
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability. a comparison of three data mining methods
    • Delen D., Walker G., Kadam A. Predicting breast cancer survivability. a comparison of three data mining methods. Artif. Intell. Med. 2005, 34(2):113-127.
    • (2005) Artif. Intell. Med. , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 5
    • 3343019343 scopus 로고    scopus 로고
    • Missing covariate data within cancer prognostic studies. a review of current reporting and proposed guidelines
    • Burton A., Altman D.G. Missing covariate data within cancer prognostic studies. a review of current reporting and proposed guidelines. Br. J. Cancer 2004, 91:4-8.
    • (2004) Br. J. Cancer , vol.91 , pp. 4-8
    • Burton, A.1    Altman, D.G.2
  • 9
    • 64249099411 scopus 로고    scopus 로고
    • Springer, Chicago, USA, S. Edge, D. Byrd, C. Compton, A. Fritz, F. Greene, A. Trotti (Eds.)
    • AJCC Cancer Staging Manual 2010, Springer, Chicago, USA. S. Edge, D. Byrd, C. Compton, A. Fritz, F. Greene, A. Trotti (Eds.).
    • (2010) AJCC Cancer Staging Manual
  • 10
    • 0032794882 scopus 로고    scopus 로고
    • Methods for handling missing values in clinical trials
    • Little R.J.A. Methods for handling missing values in clinical trials. J. Rheumatol. 1999, 26(8):1654-1656.
    • (1999) J. Rheumatol. , vol.26 , Issue.8 , pp. 1654-1656
    • Little, R.J.A.1
  • 11
    • 0038485465 scopus 로고    scopus 로고
    • Missing Data, Sage University Papers Series on Quantitative Applications in the Social Sciences
    • Thousand Oaks, CA, USA
    • P.D. Allison, Missing Data, Sage University Papers Series on Quantitative Applications in the Social Sciences, Thousand Oaks, CA, USA, 2001.
    • (2001)
    • Allison, P.D.1
  • 15
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz J.A., Wishart D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Informatics 2006, (2):59-77.
    • (2006) Cancer Informatics , Issue.2 , pp. 59-77
    • Cruz, J.A.1    Wishart, D.S.2
  • 16
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • Polat K., Gunes S. Breast cancer diagnosis using least square support vector machine. Digit. Signal Process. 2007, 17(4):694-701.
    • (2007) Digit. Signal Process. , vol.17 , Issue.4 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 17
    • 33846014233 scopus 로고    scopus 로고
    • A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis
    • Sahan S., Polat K., Kodaz H., Gunes S. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Comput. Biol. Med. 2007, 37(3):415-423.
    • (2007) Comput. Biol. Med. , vol.37 , Issue.3 , pp. 415-423
    • Sahan, S.1    Polat, K.2    Kodaz, H.3    Gunes, S.4
  • 19
    • 84901612814 scopus 로고    scopus 로고
    • A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients
    • Wang K.-J., Makond B., Chen K.-H., Wang K.-M. A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients. Appl. Soft Comput. 2014, 20:15-24.
    • (2014) Appl. Soft Comput. , vol.20 , pp. 15-24
    • Wang, K.-J.1    Makond, B.2    Chen, K.-H.3    Wang, K.-M.4
  • 20
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39(1):1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 21
    • 0001551844 scopus 로고
    • Supervised learning from incomplete data via an EM approach
    • J.D. Cowan, G. Tesauro, J. Alspector (Eds.) Denver, CO
    • Z. Ghahramani, M.I. Jordan, Supervised learning from incomplete data via an EM approach, in: J.D. Cowan, G. Tesauro, J. Alspector (Eds.), Advances in Neural Information Processing Systems, vol. 6, Denver, CO, 1993, pp. 120-127.
    • (1993) Advances in Neural Information Processing Systems , vol.6 , pp. 120-127
    • Ghahramani, Z.1    Jordan, M.I.2
  • 23
    • 34247854939 scopus 로고    scopus 로고
    • Imputation through finite gaussian mixture models
    • Zio M.D., Guarnera U., Luzi O. Imputation through finite gaussian mixture models. Comput. Stat. Data Anal. 2007, 51(11):5305-5316.
    • (2007) Comput. Stat. Data Anal. , vol.51 , Issue.11 , pp. 5305-5316
    • Zio, M.D.1    Guarnera, U.2    Luzi, O.3
  • 24
    • 76149143555 scopus 로고    scopus 로고
    • EM algorithms for nonparametric estimation of mixing distributions
    • Train K.E. EM algorithms for nonparametric estimation of mixing distributions. J. Choice Model. 2008, 1(1):40-69.
    • (2008) J. Choice Model. , vol.1 , Issue.1 , pp. 40-69
    • Train, K.E.1
  • 25
    • 0004267735 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Norwell, MA, USA
    • Aha D.W. Lazy Learning 1997, Kluwer Academic Publishers, Norwell, MA, USA.
    • (1997) Lazy Learning
    • Aha, D.W.1
  • 27
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • Batista G.E., Monard M.C. An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 2003, 17:519-533.
    • (2003) Appl. Artif. Intell. , vol.17 , pp. 519-533
    • Batista, G.E.1    Monard, M.C.2
  • 29
    • 61849150502 scopus 로고    scopus 로고
    • K nearest neighbours with mutual information for simultaneous classification and missing data imputation
    • García-Laencina P.J., Sancho-Gómez J.-L., Figueiras-Vidal A.R., Verleysen M. K nearest neighbours with mutual information for simultaneous classification and missing data imputation. Neurocomputing 2009, 72(7-9):1483-1493.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1483-1493
    • García-Laencina, P.J.1    Sancho-Gómez, J.-L.2    Figueiras-Vidal, A.R.3    Verleysen, M.4
  • 30
    • 0016939390 scopus 로고
    • The distance-weighted k-nearest-neighbor rule
    • Dudani S.A. The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 1976, 6(4):325-327.
    • (1976) IEEE Trans. Syst. Man Cybern. , vol.6 , Issue.4 , pp. 325-327
    • Dudani, S.A.1
  • 33
    • 35048827612 scopus 로고    scopus 로고
    • High computational complexity of the decision tree induction with many missing attribute values
    • CS&P
    • R. Latkowski, High computational complexity of the decision tree induction with many missing attribute values, in: Proceedings of Concurrency, Specification and Programming. CS&P, vol. 22, 2003, pp. 318-325.
    • (2003) Proceedings of Concurrency, Specification and Programming. , vol.22 , pp. 318-325
    • Latkowski, R.1
  • 37
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 38
    • 84888389162 scopus 로고    scopus 로고
    • Robust predictive model for evaluating breast cancer survivability
    • Park K., Ali A., Kim D., An Y., Kim M., Shin H. Robust predictive model for evaluating breast cancer survivability. Eng. Appl. Artif. Intell. 2013, 26(9):2194-2205.
    • (2013) Eng. Appl. Artif. Intell. , vol.26 , Issue.9 , pp. 2194-2205
    • Park, K.1    Ali, A.2    Kim, D.3    An, Y.4    Kim, M.5    Shin, H.6
  • 39
    • 0017873866 scopus 로고
    • Regression analysis of grouped survival data with application to breast cancer data
    • Prentice R.L., Gloeckler L.A. Regression analysis of grouped survival data with application to breast cancer data. Biometrics 1978, 34(1):57-67.
    • (1978) Biometrics , vol.34 , Issue.1 , pp. 57-67
    • Prentice, R.L.1    Gloeckler, L.A.2
  • 41
    • 33646470217 scopus 로고    scopus 로고
    • Impact of missing data in evaluating artificial neural networks trained on complete data
    • Markey M.K., Tourassi G.D., Margolis M., DeLong D.M. Impact of missing data in evaluating artificial neural networks trained on complete data. Comput. Biol. Med. 2006, 36(5):516-525.
    • (2006) Comput. Biol. Med. , vol.36 , Issue.5 , pp. 516-525
    • Markey, M.K.1    Tourassi, G.D.2    Margolis, M.3    DeLong, D.M.4
  • 42
    • 84855977818 scopus 로고    scopus 로고
    • Missing value imputation in DNA microarrays based on conjugate gradient method
    • Dorri F., Azmi P., Dorri F. Missing value imputation in DNA microarrays based on conjugate gradient method. Comput. Biol. Med. 2012, 42(2):222-227.
    • (2012) Comput. Biol. Med. , vol.42 , Issue.2 , pp. 222-227
    • Dorri, F.1    Azmi, P.2    Dorri, F.3
  • 43
    • 84883615604 scopus 로고    scopus 로고
    • Predicting cardiac autonomic neuropathy category for diabetic data with missing values
    • Abawajy J., Kelarev A., Chowdhury M., Stranieri A., Jelinek H.F. Predicting cardiac autonomic neuropathy category for diabetic data with missing values. Comput. Biol. Med. 2013, 43(10):1328-1333.
    • (2013) Comput. Biol. Med. , vol.43 , Issue.10 , pp. 1328-1333
    • Abawajy, J.1    Kelarev, A.2    Chowdhury, M.3    Stranieri, A.4    Jelinek, H.F.5
  • 44
    • 2342659697 scopus 로고    scopus 로고
    • Non-ignorable missing covariate data in survival analysis. a case-study of an international breast cancer study group trial
    • Herring A.H., Ibrahim J.G., Lipsitz S.R. Non-ignorable missing covariate data in survival analysis. a case-study of an international breast cancer study group trial. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2004, 53(2):293-310.
    • (2004) J. R. Stat. Soc. Ser. C (Appl. Stat.) , vol.53 , Issue.2 , pp. 293-310
    • Herring, A.H.1    Ibrahim, J.G.2    Lipsitz, S.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.