메뉴 건너뛰기




Volumn 2018-December, Issue , 2018, Pages 3455-3464

Zeroth-order (non)-convex stochastic optimization via conditional gradient and gradient updates

Author keywords

[No Author keywords available]

Indexed keywords

CONVEX OPTIMIZATION; STOCHASTIC SYSTEMS;

EID: 85064838956     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (101)

References (34)
  • 1
    • 84983143287 scopus 로고    scopus 로고
    • Convex optimization: Algorithms and complexity
    • Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and TrendsR in Machine Learning, 8(3-4):231-357, 2015.
    • (2015) Foundations and TrendsR in Machine Learning , vol.8 , Issue.3-4 , pp. 231-357
    • Bubeck, S.1
  • 2
    • 84874045238 scopus 로고    scopus 로고
    • Regret analysis of stochastic and nonstochastic multi-armed bandit problems
    • Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and TrendsR in Machine Learning, 5(1):1-122, 2012.
    • (2012) Foundations and TrendsR in Machine Learning , vol.5 , Issue.1 , pp. 1-122
    • Bubeck, S.1    Cesa-Bianchi, N.2
  • 7
    • 84928632779 scopus 로고    scopus 로고
    • Optimal rates for zero-order convex optimization: The power of two function evaluations
    • John Duchi, Michael Jordan, Martin Wainwright, and Andre Wibisono. Optimal rates for zero-order convex optimization: The power of two function evaluations. IEEE Transactions on Information Theory, 61(5):2788-2806, 2015.
    • (2015) IEEE Transactions on Information Theory , vol.61 , Issue.5 , pp. 2788-2806
    • Duchi, J.1    Jordan, M.2    Wainwright, M.3    Wibisono, A.4
  • 9
    • 84892854517 scopus 로고    scopus 로고
    • Stochastic first- and zeroth-order methods for nonconvex stochastic programming
    • S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.4 , pp. 2341-2368
    • Ghadimi, S.1    Lan, G.2
  • 10
    • 85064824412 scopus 로고    scopus 로고
    • Conditional gradient type methods for composite nonlinear and stochastic optimization
    • Saeed Ghadimi. Conditional gradient type methods for composite nonlinear and stochastic optimization. Mathematical Programming, 2018.
    • (2018) Mathematical Programming
    • Ghadimi, S.1
  • 13
    • 85015232406 scopus 로고    scopus 로고
    • Variance-reduced and projection-free stochastic optimization
    • Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In International Conference on Machine Learning, pages 1263-1271, 2016.
    • (2016) International Conference on Machine Learning , pp. 1263-1271
    • Hazan, E.1    Luo, H.2
  • 14
    • 0020116651 scopus 로고
    • The gap function of a convex program
    • Donald Hearn. The gap function of a convex program. Operations Research Letters, 2, 1982.
    • (1982) Operations Research Letters , vol.2
    • Hearn, D.1
  • 15
    • 84897524603 scopus 로고    scopus 로고
    • Revisiting frank-wolfe: Projection-free sparse convex optimization
    • Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML (1), pages 427-435, 2013.
    • (2013) ICML , Issue.1 , pp. 427-435
    • Jaggi, M.1
  • 16
    • 85037538890 scopus 로고    scopus 로고
    • Non-convex optimization for machine learning
    • Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. Foundations and Trends® in Machine Learning, 10(3-4):142-336, 2017.
    • (2017) Foundations and Trends® in Machine Learning , vol.10 , Issue.3-4 , pp. 142-336
    • Jain, P.1    Kar, P.2
  • 17
    • 84937844304 scopus 로고    scopus 로고
    • On iterative hard thresholding methods for high-dimensional m-estimation
    • Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods for high-dimensional m-estimation. In Advances in Neural Information Processing Systems, pages 685-693, 2014.
    • (2014) Advances in Neural Information Processing Systems , pp. 685-693
    • Jain, P.1    Tewari, A.2    Kar, P.3
  • 19
    • 84976873279 scopus 로고    scopus 로고
    • Conditional gradient sliding for convex optimization
    • Guanghui Lan and Yi Zhou. Conditional gradient sliding for convex optimization. SIAM Journal on Optimization, 26(2):1379-1409, 2016.
    • (2016) SIAM Journal on Optimization , vol.26 , Issue.2 , pp. 1379-1409
    • Lan, G.1    Zhou, Y.2
  • 27
    • 84948964679 scopus 로고    scopus 로고
    • Random gradient-free minimization of convex functions
    • Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations of Computational Mathematics, 17(2):527-566, 2017.
    • (2017) Foundations of Computational Mathematics , vol.17 , Issue.2 , pp. 527-566
    • Nesterov, Y.1    Spokoiny, V.2
  • 31
    • 84898041887 scopus 로고    scopus 로고
    • On the complexity of bandit and derivative-free stochastic convex optimization
    • Ohad Shamir. On the complexity of bandit and derivative-free stochastic convex optimization. In Conference on Learning Theory, pages 3-24, 2013.
    • (2013) Conference on Learning Theory , pp. 3-24
    • Shamir, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.