메뉴 건너뛰기




Volumn 1, Issue January, 2014, Pages 685-693

On iterative hard thresholding methods for high-dimensional M-estimation

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE ENHANCEMENT; INFORMATION SCIENCE; REGRESSION ANALYSIS;

EID: 84937844304     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (233)

References (25)
  • 2
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • Sahand Negahban, Martin J Wainwright, et al. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. The Annals of Statistics, 39(2):1069-1097, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.2 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.J.2
  • 3
    • 80053974183 scopus 로고    scopus 로고
    • Minimax rates of estimation for high-dimensional linear regression over ℓq-balls
    • IEEE Transactions on
    • Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation for high-dimensional linear regression over ℓq-balls. Information Theory, IEEE Transactions on, 57(10):6976-6994, 2011.
    • (2011) Information Theory , vol.57 , Issue.10 , pp. 6976-6994
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 4
    • 79952902758 scopus 로고    scopus 로고
    • Estimation of high-dimensional low-rank matrices
    • Angelika Rohde and Alexandre B Tsybakov. Estimation of high-dimensional low-rank matrices. The Annals of Statistics, 39(2):887-930, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.2 , pp. 887-930
    • Rohde, A.1    Tsybakov, A.B.2
  • 5
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
    • Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, Bin Yu, et al. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Statistical Science, 27(4):538-557, 2012.
    • (2012) Statistical Science , vol.27 , Issue.4 , pp. 538-557
    • Negahban, S.N.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 6
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2):227-234, 1995.
    • (1995) SIAM Journal on Computing , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 7
  • 8
    • 85162338305 scopus 로고    scopus 로고
    • On learning discrete graphical models using greedy methods
    • Ali Jalali, Christopher C Johnson, and Pradeep D Ravikumar. On learning discrete graphical models using greedy methods. In NIPS, pages 1935-1943, 2011.
    • (2011) NIPS , pp. 1935-1943
    • Jalali, A.1    Johnson, C.C.2    Ravikumar, P.D.3
  • 9
    • 79251503629 scopus 로고    scopus 로고
    • Trading accuracy for sparsity in optimization problems with sparsity constraints
    • Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading accuracy for sparsity in optimization problems with sparsity constraints. SIAM Journal on Optimization, 20(6):2807-2832, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.6 , pp. 2807-2832
    • Shalev-Shwartz, S.1    Srebro, N.2    Zhang, T.3
  • 13
    • 71149117997 scopus 로고    scopus 로고
    • Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property
    • Rahul Garg and Rohit Khandekar. Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property. In ICML, 2009.
    • (2009) ICML
    • Garg, R.1    Khandekar, R.2
  • 14
    • 84856034474 scopus 로고    scopus 로고
    • Hard thresholding pursuit: An algorithm for compressive sensing
    • Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. on Num. Anal, 49(6):2543-2563, 2011.
    • (2011) SIAM J. on Num. Anal , vol.49 , Issue.6 , pp. 2543-2563
    • Foucart, S.1
  • 15
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • Deanna Needell and Joel A. Tropp. CoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples. Appl. Comput. Harmon. Anal., 26:301-321, 2008.
    • (2008) Appl. Comput. Harmon. Anal. , vol.26 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 16
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory, 55(5):2230-2249, 2009.
    • (2009) IEEE Trans. Inf. Theory , vol.55 , Issue.5 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 21
    • 84872078104 scopus 로고    scopus 로고
    • High-dimension regression with noisy and missing data: Provable guarantees with non-convexity
    • P. Loh and M. J. Wainwright. High-dimension regression with noisy and missing data: Provable guarantees with non-convexity. Annals of Statistics, 40(3):1637-1664, 2012.
    • (2012) Annals of Statistics , vol.40 , Issue.3 , pp. 1637-1664
    • Loh, P.1    Wainwright, M.J.2
  • 22
    • 84873371070 scopus 로고    scopus 로고
    • Fast global convergence of gradient methods for high-dimensional statistical recovery
    • Alekh Agarwal, Sahand N. Negahban, and Martin J. Wainwright. Fast global convergence of gradient methods for high-dimensional statistical recovery. Annals of Statistics, 40(5):2452-2482, 2012.
    • (2012) Annals of Statistics , vol.40 , Issue.5 , pp. 2452-2482
    • Agarwal, A.1    Negahban, S.N.2    Wainwright, M.J.3
  • 24
    • 79959549699 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for learning sparse representations
    • Tong Zhang. Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations. IEEE Trans. Inf. Theory, 57:4689-4708, 2011.
    • (2011) IEEE Trans. Inf. Theory , vol.57 , pp. 4689-4708
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.