메뉴 건너뛰기




Volumn , Issue , 2018, Pages 1356-1365

Stochastic zeroth-order optimization in high dimensions

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; FUNCTIONS;

EID: 85064809780     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (107)

References (44)
  • 1
    • 84860244324 scopus 로고    scopus 로고
    • Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization
    • A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. IEEE Transactions on Information Theory, 58(5):3235–3249, 2012.
    • (2012) IEEE Transactions on Information Theory , vol.58 , Issue.5 , pp. 3235-3249
    • Agarwal, A.1    Bartlett, P.L.2    Ravikumar, P.3    Wainwright, M.J.4
  • 4
    • 84865690792 scopus 로고    scopus 로고
    • Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization
    • A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization. Mathematical Programming, 134:223–257, 2012.
    • (2012) Mathematical Programming , vol.134 , pp. 223-257
    • Bandeira, A.S.1    Scheinberg, K.2    Vicente, L.N.3
  • 5
    • 84910601452 scopus 로고    scopus 로고
    • Convergence of trust-region methods based on probabilistic models
    • A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region methods based on probabilistic models. SIAM Journal on Optimization, 24(3):1238–1264, 2014.
    • (2014) SIAM Journal on Optimization , vol.24 , Issue.3 , pp. 1238-1264
    • Bandeira, A.S.1    Scheinberg, K.2    Vicente, L.N.3
  • 6
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3):167–175, 2003.
    • (2003) Operations Research Letters , vol.31 , Issue.3 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 7
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics, 37(4):1705–1732, 2009.
    • (2009) The Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 9
    • 80555140070 scopus 로고    scopus 로고
    • Convergence rates of efficient global optimization algorithms
    • A. D. Bull. Convergence rates of efficient global optimization algorithms. Journal of Machine Learning Research, 12(Oct):2879–2904, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , Issue.Oct , pp. 2879-2904
    • Bull, A.D.1
  • 10
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489–509, 2006.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 14
    • 84871576447 scopus 로고    scopus 로고
    • Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: A generic algorithmic framework
    • S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: A generic algorithmic framework. SIAM Journal on Optimization, 22(4):1469–1492, 2012.
    • (2012) SIAM Journal on Optimization , vol.22 , Issue.4 , pp. 1469-1492
    • Ghadimi, S.1    Lan, G.2
  • 15
    • 84892856128 scopus 로고    scopus 로고
    • Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: Shrinking procedures and optimal algorithms
    • S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: shrinking procedures and optimal algorithms. SIAM Journal on Optimization, 23(4):2061–2089, 2013.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.4 , pp. 2061-2089
    • Ghadimi, S.1    Lan, G.2
  • 17
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13–30, 1963.
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 19
    • 84919709419 scopus 로고    scopus 로고
    • Confidence intervals and hypothesis testing for high-dimensional regression
    • A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-dimensional regression. Journal of Machine Learning Research, 15(1):2869–2909, 2014.
    • (2014) Journal of Machine Learning Research , vol.15 , Issue.1 , pp. 2869-2909
    • Javanmard, A.1    Montanari, A.2
  • 21
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • K. Knight and W. Fu. Asymptotics for lasso-type estimators. The Annals of statistics, 28(5):1356–1378, 2000.
    • (2000) The Annals of Statistics , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 22
    • 84862273593 scopus 로고    scopus 로고
    • An optimal method for stochastic composite optimization
    • G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming, 133:365–397, 2012.
    • (2012) Mathematical Programming , vol.133 , pp. 365-397
    • Lan, G.1
  • 25
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of lasso and dantzig estimators
    • K. Lounici. Sup-norm convergence rate and sign concentration property of lasso and dantzig estimators. Electronic Journal of Statistics, 2:90–102, 2008.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 90-102
    • Lounici, K.1
  • 27
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 29
    • 2642531109 scopus 로고    scopus 로고
    • Twicing kernels and a small bias property of semiparametric estimators
    • W. K. Newey, F. Hsieh, and J. M. Robins. Twicing kernels and a small bias property of semiparametric estimators. Econometrica, 72(3):947–962, 2004.
    • (2004) Econometrica , vol.72 , Issue.3 , pp. 947-962
    • Newey, W.K.1    Hsieh, F.2    Robins, J.M.3
  • 30
    • 80053974183 scopus 로고    scopus 로고
    • Mini-max rates of estimation for high-dimensional linear regression over lq-balls
    • G. Raskutti, M. J. Wainwright, and B. Yu. Mini-max rates of estimation for high-dimensional linear regression over Lq-balls. IEEE Transactions on Information Theory, 57(10):6976–6994, 2011.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.10 , pp. 6976-6994
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 33
    • 79251503629 scopus 로고    scopus 로고
    • Trading accuracy for sparsity in optimization problems with sparsity constraints
    • S. Shalev-Shwartz, N. Srebro, and T. Zhang. Trading accuracy for sparsity in optimization problems with sparsity constraints. SIAM Journal on Optimization, 20(6):2807–2832, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.6 , pp. 2807-2832
    • Shalev-Shwartz, S.1    Srebro, N.2    Zhang, T.3
  • 34
    • 79960131832 scopus 로고    scopus 로고
    • Stochastic methods for l1-regularized loss minimization
    • S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1-regularized loss minimization. Journal of Machine Learning Research, 12(Jun):1865–1892, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , Issue.Jun , pp. 1865-1892
    • Shalev-Shwartz, S.1    Tewari, A.2
  • 39
    • 84988001472 scopus 로고    scopus 로고
    • On asymptotically optimal confidence regions and tests for high-dimensional models
    • S. Van de Geer, P. Bühlmann, Y. Ritov, R. Dezeure, et al. On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics, 42(3):1166–1202, 2014.
    • (2014) The Annals of Statistics , vol.42 , Issue.3 , pp. 1166-1202
    • Van de Geer, S.1    Bühlmann, P.2    Ritov, Y.3    Dezeure, R.4
  • 40
    • 0032622766 scopus 로고    scopus 로고
    • A general class of exponential inequalities for martingales and ratios
    • H. Victor. A general class of exponential inequalities for martingales and ratios. The Annals of Probability, 27(1):537–564, 1999.
    • (1999) The Annals of Probability , vol.27 , Issue.1 , pp. 537-564
    • Victor, H.1
  • 41
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (lasso)
    • M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using L1-constrained quadratic programming (Lasso). IEEE Transactions on Information T theory, 55(5):2183–2202, 2009.
    • (2009) IEEE Transactions on Information T Theory , vol.55 , Issue.5 , pp. 2183-2202
    • Wainwright, M.J.1
  • 42
    • 84880741411 scopus 로고    scopus 로고
    • A proximal-gradient homotopy method for the sparse least-squares problem
    • L. Xiao and T. Zhang. A proximal-gradient homotopy method for the sparse least-squares problem. SIAM Journal on Optimization, 23(2):1062–1091, 2013.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.2 , pp. 1062-1091
    • Xiao, L.1    Zhang, T.2
  • 44
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine learning research, 7(Nov):2541–2563, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , Issue.Nov , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.