메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 427-435

Revisiting Frank-Wolfe: Projection-free sparse convex optimization

Author keywords

[No Author keywords available]

Indexed keywords

CONVEX OPTIMIZATION; ITERATIVE METHODS; LEARNING SYSTEMS;

EID: 84897524603     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1359)

References (52)
  • 1
    • 33747188137 scopus 로고    scopus 로고
    • Approximating the Cut-Norm via Grothendieck's Inequality
    • Alon, N and Naor, A. Approximating the Cut-Norm via Grothendieck's Inequality. SIAM J. Computing, 2006.
    • (2006) SIAM J. Computing
    • Alon, N.1    Naor, A.2
  • 2
    • 33748601484 scopus 로고    scopus 로고
    • Fast algorithms for approximate semidefinite programming using the multiplicative weights update method
    • Arora, S, Hazan, E, and Kale, S. Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. FOCS, 2005.
    • (2005) FOCS
    • Arora, S.1    Hazan, E.2    Kale, S.3
  • 5
    • 84867128558 scopus 로고    scopus 로고
    • On the Equivalence between Herding and Conditional Gradient Algorithms
    • Bach, F, Lacoste-Julien, S, and Obozinski, G. On the Equivalence between Herding and Conditional Gradient Algorithms. In ICML, 2012.
    • (2012) ICML
    • Bach, F.1    Lacoste-Julien, S.2    Obozinski, G.3
  • 7
    • 77951291046 scopus 로고    scopus 로고
    • A Singular Value Thresholding Algorithm for Matrix Completion
    • Cai, J-F, Candes, E J, and Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM Journal on Optimization, 20(4):1956-1982, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.-F.1    Candes, E.J.2    Shen, Z.3
  • 8
    • 0009960666 scopus 로고
    • A Tight Upper Bound on the Rate of Convergence of Frank-Wolfe Algorithm
    • Canon, M D and Cullum, C D. A Tight Upper Bound on the Rate of Convergence of Frank-Wolfe Algorithm. SIAM Journal on Control, 6(4):509-516, 1968.
    • (1968) SIAM Journal on Control , vol.6 , Issue.4 , pp. 509-516
    • Canon, M.D.1    Cullum, C.D.2
  • 10
    • 77956546378 scopus 로고    scopus 로고
    • Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algorithm
    • Clarkson, K L. Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algorithm. ACM Transactions on Algorithms, 6(4), 2010.
    • (2010) ACM Transactions on Algorithms , vol.6 , Issue.4
    • Clarkson, K.L.1
  • 12
    • 84866721491 scopus 로고    scopus 로고
    • Lifted coordinate descent for learning with trace-norm regularization
    • Dudik, M, Harchaoui, Z, and Malick, J. Lifted coordinate descent for learning with trace-norm regularization. In AISTATS, 2012.
    • (2012) AISTATS
    • Dudik, M.1    Harchaoui, Z.2    Malick, J.3
  • 14
    • 0002167079 scopus 로고
    • Submodular Functions, Matroids, and Certain Polyhedra
    • Edmonds, J. Submodular Functions, Matroids, and Certain Polyhedra. In Comb. Struct. and Appl., 69-87, 1970.
    • (1970) Comb. Struct. and Appl. , pp. 69-87
    • Edmonds, J.1
  • 15
    • 0001971618 scopus 로고
    • An algorithm for quadratic programming
    • Frank, M and Wolfe, P. An algorithm for quadratic programming. Naval Res. Logis. Quart., 3:95-110, 1956.
    • (1956) Naval Res. Logis. Quart. , vol.3 , pp. 95-110
    • Frank, M.1    Wolfe, P.2
  • 16
    • 70849115298 scopus 로고    scopus 로고
    • Coresets for polytope distance
    • Gärtner, B and Jaggi, M. Coresets for polytope distance. ACM SCG, 2009.
    • (2009) ACM SCG
    • Gärtner, B.1    Jaggi, M.2
  • 17
    • 84866711443 scopus 로고    scopus 로고
    • Regularization Paths with Guarantees for Convex Semidefinite Optimization
    • Giesen, J, Jaggi, M, and Laue, S. Regularization Paths with Guarantees for Convex Semidefinite Optimization. AISTATS, 2012.
    • (2012) AISTATS
    • Giesen, J.1    Jaggi, M.2    Laue, S.3
  • 18
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • Goemans, M and Williamson, D. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6), 1995.
    • (1995) J. ACM , vol.42 , Issue.6
    • Goemans, M.1    Williamson, D.2
  • 21
    • 43049120013 scopus 로고    scopus 로고
    • Sparse Approximate Solutions to Semidefinite Programs
    • Hazan, E. Sparse Approximate Solutions to Semidefinite Programs. In LATIN, pp. 306-316, 2008.
    • (2008) LATIN , pp. 306-316
    • Hazan, E.1
  • 22
    • 84867122248 scopus 로고    scopus 로고
    • Projection-free Online Learning
    • Hazan, E and Kale, S. Projection-free Online Learning. In ICML, 2012.
    • (2012) ICML
    • Hazan, E.1    Kale, S.2
  • 23
    • 84867123611 scopus 로고    scopus 로고
    • Learning rotations with little regret
    • Hazan, E, Kale, S, and Warmuth, M.K. Learning rotations with little regret. In COLT, pp. 144-154, 2010.
    • (2010) COLT , pp. 144-154
    • Hazan, E.1    Kale, S.2    Warmuth, M.K.3
  • 25
    • 77956535889 scopus 로고    scopus 로고
    • A Simple Algorithm for Nuclear Norm Regularized Problems
    • Jaggi, M and Sulovský, M. A Simple Algorithm for Nuclear Norm Regularized Problems. ICML, 2010.
    • (2010) ICML
    • Jaggi, M.1    Sulovský, M.2
  • 26
    • 80555129673 scopus 로고    scopus 로고
    • Structured Variable Selection with Sparsity-Inducing Norms
    • Jenatton, R, Audibert, J-Y, and Bach, F. Structured Variable Selection with Sparsity-Inducing Norms. JMLR, 12:2777-2824, 2011.
    • (2011) JMLR , vol.12 , pp. 2777-2824
    • Jenatton, R.1    Audibert, J.-Y.2    Bach, F.3
  • 27
    • 0000796112 scopus 로고
    • A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training
    • Jones, L K. A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training. The Annals of Statistics, 20(1):608-613, 1992.
    • (1992) The Annals of Statistics , vol.20 , Issue.1 , pp. 608-613
    • Jones, L.K.1
  • 28
    • 0043178250 scopus 로고
    • Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start
    • Kuczyński, J and Woźniakowski, H. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start. SIAM Journal on Matrix Analysis and Applications, 13(4):1094-1122, 1992.
    • (1992) SIAM Journal on Matrix Analysis and Applications , vol.13 , Issue.4 , pp. 1094-1122
    • Kuczyński, J.1    Woźniakowski, H.2
  • 29
  • 32
    • 84897508786 scopus 로고    scopus 로고
    • Mixture density estimat
    • Li, J and Barron, A. Mixture density estimat. NIPS, 2000.
    • (2000) NIPS
    • Li, J.1    Barron, A.2
  • 35
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Mallat, S G and Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415, 1993.
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.G.1    Zhang, Z.2
  • 36
    • 0023452095 scopus 로고
    • Some NP-complete problems in quadratic and nonlinear programming
    • Murty, K G and Kabadi, S N. Some NP-complete problems in quadratic and nonlinear programming. Mathematical Programming, 39(2):117-129, 1987.
    • (1987) Mathematical Programming , vol.39 , Issue.2 , pp. 117-129
    • Murty, K.G.1    Kabadi, S.N.2
  • 40
    • 84870243198 scopus 로고    scopus 로고
    • Fast Stochastic Frank-Wolfe Algorithms for Nonlinear SVMs
    • Ouyang, H. and Gray, A. Fast Stochastic Frank-Wolfe Algorithms for Nonlinear SVMs. SDM, 2010.
    • (2010) SDM
    • Ouyang, H.1    Gray, A.2
  • 41
  • 43
    • 79251503629 scopus 로고    scopus 로고
    • Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints
    • Shalev-Shwartz, S, Srebro, N, and Zhang, T. Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints. SIAM J. on Optimization, 20, 2010.
    • (2010) SIAM J. on Optimization , vol.20
    • Shalev-Shwartz, S.1    Srebro, N.2    Zhang, T.3
  • 44
    • 24944527668 scopus 로고    scopus 로고
    • Rank, Trace-Norm and Max-Norm
    • Srebro, N and Shraibman, A. Rank, Trace-Norm and Max-Norm. In COLT, 545-560, 2005.
    • (2005) COLT , pp. 545-560
    • Srebro, N.1    Shraibman, A.2
  • 46
    • 85162449444 scopus 로고    scopus 로고
    • Greedy Algorithms for Structurally Constrained High Dimensional Problems
    • Tewari, A, Ravikumar, P, and Dhillon, I S. Greedy Algorithms for Structurally Constrained High Dimensional Problems. In NIPS, 2011.
    • (2011) NIPS
    • Tewari, A.1    Ravikumar, P.2    Dhillon, I.S.3
  • 48
    • 64649083745 scopus 로고    scopus 로고
    • Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit
    • Tropp, J A and Gilbert, A. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. on Information Theory, 53(12):4655-4666, 2007.
    • (2007) IEEE Trans. on Information Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.2
  • 50
    • 84877745344 scopus 로고    scopus 로고
    • Forward Basis Selection for Sparse Approximation over Dictionary
    • Yuan, X-T and Yan, S. Forward Basis Selection for Sparse Approximation over Dictionary. In AISTATS, 2012.
    • (2012) AISTATS
    • Yuan, X.-T.1    Yan, S.2
  • 51
    • 0037355948 scopus 로고    scopus 로고
    • Sequential greedy approximation for certain convex optimization problems
    • Zhang, T. Sequential greedy approximation for certain convex optimization problems. IEEE Transactions on Information Theory, 49(3):682-691, 2003.
    • (2003) IEEE Transactions on Information Theory , vol.49 , Issue.3 , pp. 682-691
    • Zhang, T.1
  • 52
    • 84877780790 scopus 로고    scopus 로고
    • Accelerated Training for Matrix-norm Regularization: A Boosting Approach
    • Zhang, X, Yu, Y, and Schuurmans, D. Accelerated Training for Matrix-norm Regularization: A Boosting Approach. In NIPS, 2012.
    • (2012) NIPS
    • Zhang, X.1    Yu, Y.2    Schuurmans, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.