메뉴 건너뛰기




Volumn 8, Issue 3-4, 2015, Pages 231-357

Convex optimization: Algorithms and complexity

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTATIONAL COMPLEXITY; CONVEX OPTIMIZATION; LEARNING SYSTEMS; MIRRORS; RANDOM PROCESSES; RELAXATION PROCESSES; STOCHASTIC SYSTEMS; STRUCTURAL OPTIMIZATION;

EID: 84983143287     PISSN: 19358237     EISSN: 19358245     Source Type: Journal    
DOI: 10.1561/2200000050     Document Type: Article
Times cited : (1891)

References (89)
  • 3
    • 0032243583 scopus 로고    scopus 로고
    • Towards a practical volumetric cutting plane method for convex programming
    • K. M. Anstreicher. Towards a practical volumetric cutting plane method for convex programming. SIAM Journal on Optimization, 9(1):190-206, 1998.
    • (1998) SIAM Journal on Optimization , vol.9 , Issue.1 , pp. 190-206
    • Anstreicher, K.M.1
  • 4
    • 84877732697 scopus 로고    scopus 로고
    • Bandit view on noisy optimization
    • S. Sra, S. Nowozin, and S. Wright, editors, MIT press
    • J.Y Audibert, S. Bubeck, and R. Munos. Bandit view on noisy optimization. In S. Sra, S. Nowozin, and S. Wright, editors, Optimization for Machine Learning. MIT press, 2011.
    • (2011) Optimization for Machine Learning
    • Audibert, J.Y.1    Bubeck, S.2    Munos, R.3
  • 6
    • 84889843868 scopus 로고    scopus 로고
    • Learning with submodular functions: A convex optimization perspective
    • F. Bach. Learning with submodular functions: A convex optimization perspective. Foundations and Trends R in Machine Learning, 6(2-3):145-373, 2013.
    • (2013) Foundations and Trends R in Machine Learning , vol.6 , Issue.2-3 , pp. 145-373
    • Bach, F.1
  • 10
    • 0037403111 scopus 로고    scopus 로고
    • Mirror Descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle. Mirror Descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3):167- 175, 2003.
    • (2003) Operations Research Letters , vol.31 , Issue.3 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 11
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 13
    • 4243173687 scopus 로고    scopus 로고
    • Solving convex programs by random walks
    • D. Bertsimas and S. Vempala. Solving convex programs by random walks. Journal of the ACM, 51:540-556, 2004.
    • (2004) Journal of the ACM , vol.51 , pp. 540-556
    • Bertsimas, D.1    Vempala, S.2
  • 15
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends R in Machine Learning, 3(1):1-122, 2011.
    • (2011) Foundations and Trends R in Machine, Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 17
    • 84874045238 scopus 로고    scopus 로고
    • Regret analysis of stochastic and nonstochastic multi-armed bandit problems
    • S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends R in Machine Learning, 5(1):1-122, 2012.
    • (2012) Foundations and Trends R in Machine Learning , vol.5 , Issue.1 , pp. 1-122
    • Bubeck, S.1    Cesa-Bianchi, N.2
  • 22
    • 0000478038 scopus 로고
    • Méthode générale pour la résolution des systemes d'équations simultanées
    • A. Cauchy. Méthode générale pour la résolution des systemes d'équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536-538, 1847.
    • (1847) Comp. Rend., Sci. Paris , vol.25 , Issue.1847 , pp. 536-538
    • Cauchy, A.1
  • 24
    • 79953201848 scopus 로고    scopus 로고
    • A first-order primal-dual algorithm for convex problems with applications to imaging
    • A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120-145, 2011.
    • (2011) Journal of Mathematical Imaging and Vision , vol.40 , Issue.1 , pp. 120-145
    • Chambolle, A.1    Pock, T.2
  • 28
    • 57249107300 scopus 로고    scopus 로고
    • Smooth optimization with approximate gradient
    • A. d'Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Optimization, 19(3):1171-1183, 2008.
    • (2008) SIAM Journal on Optimization , vol.19 , Issue.3 , pp. 1171-1183
    • D'Aspremont, A.1
  • 33
  • 34
  • 35
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115-1145, 1995.
    • (1995) Journal of the ACM , vol.42 , Issue.6 , pp. 1115-1145
    • Goemans, M.1    Williamson, D.2
  • 36
    • 0006630130 scopus 로고
    • A sublinear-time randomized approximation algorithm for matrix games
    • M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approximation algorithm for matrix games. Operations Research Letters, 18: 53-58, 1995.
    • (1995) Operations Research Letters , vol.18 , pp. 53-58
    • Grigoriadis, M.D.1    Khachiyan, L.G.2
  • 37
    • 84972540637 scopus 로고
    • Partitions of mass-distributions and of convex bodies by hyperplanes
    • B. Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes. Pacific J. Math, 10(4):1257-1261, 1960.
    • (1960) Pacific J. Math , vol.10 , Issue.4 , pp. 1257-1261
    • Grünbaum, B.1
  • 39
    • 84867129418 scopus 로고    scopus 로고
    • The convex optimization approach to regret minimization
    • S. Sra, S. Nowozin, and S.Wright, editors, MIT press
    • E. Hazan. The convex optimization approach to regret minimization. In S. Sra, S. Nowozin, and S.Wright, editors, Optimization for Machine Learning, pages 287-303. MIT press, 2011.
    • (2011) Optimization for Machine Learning , pp. 287-303
    • Hazan, E.1
  • 43
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training
    • L. K. Jones. A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics, pages 608-613, 1992.
    • (1992) Annals of Statistics , pp. 608-613
    • Jones, L.K.1
  • 44
    • 84865676844 scopus 로고    scopus 로고
    • First-order methods for nonsmooth convex large-scale optimization, i: General purpose methods
    • S. Sra, S. Nowozin, and S. Wright, editors, MIT press
    • A. Juditsky and A. Nemirovski. First-order methods for nonsmooth convex large-scale optimization, i: General purpose methods. In S. Sra, S. Nowozin, and S. Wright, editors, Optimization for Machine Learning, pages 121-147. MIT press, 2011a.
    • (2011) Optimization for Machine Learning , pp. 121-147
    • Juditsky, A.1    Nemirovski, A.2
  • 45
    • 84865676844 scopus 로고    scopus 로고
    • First-order methods for nonsmooth convex large-scale optimization, II: Utilizing problem's structure
    • S. Sra, S. Nowozin, and S. Wright, editors, MIT press
    • A. Juditsky and A. Nemirovski. First-order methods for nonsmooth convex large-scale optimization, ii: Utilizing problem's structure. In S. Sra, S. Nowozin, and S. Wright, editors, Optimization for Machine Learning, pages 149-183. MIT press, 2011b.
    • (2011) Optimization for Machine Learning , pp. 149-183
    • Juditsky, A.1    Nemirovski, A.2
  • 46
    • 51249181779 scopus 로고
    • A new polynomial-time algorithm for linear programming
    • N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373-395, 1984.
    • (1984) Combinatorica , vol.4 , pp. 373-395
    • Karmarkar, N.1
  • 48
    • 84872514178 scopus 로고    scopus 로고
    • A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets
    • N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. In Advances in Neural Information Processing Systems (NIPS), 2012.
    • (2012) Advances in Neural Information Processing Systems (NIPS)
    • Le Roux, N.1    Schmidt, M.2    Bach, F.3
  • 51
    • 0001082761 scopus 로고
    • On an algorithm for the minimization of convex functions
    • volume
    • A. Levin. On an algorithm for the minimization of convex functions. In Soviet Mathematics Doklady, volume 160, pages 1244-1247, 1965.
    • (1965) Soviet Mathematics Doklady , vol.160 , pp. 1244-1247
    • Levin, A.1
  • 52
    • 0005342311 scopus 로고    scopus 로고
    • Hit-and-run mixes fast
    • L. Lovász. Hit-and-run mixes fast. Math. Prog., 86:443-461, 1998.
    • (1998) Math. Prog. , vol.86 , pp. 443-461
    • Lovász, L.1
  • 53
    • 77955056792 scopus 로고    scopus 로고
    • Comment on: 1-penalization for mixture regression models
    • G. Lugosi. Comment on: 1-penalization for mixture regression models. Test, 19(2):259-263, 2010.
    • (2010) Test , vol.19 , Issue.2 , pp. 259-263
    • Lugosi, G.1
  • 54
    • 0024716617 scopus 로고
    • A linear-time median-finding algorithm for projecting a vector on the simplex of rn
    • N. Maculan and G. G. de Paula. A linear-time median-finding algorithm for projecting a vector on the simplex of rn. Operations research letters, 8(4): 219-222, 1989.
    • (1989) Operations Research Letters , vol.8 , Issue.4 , pp. 219-222
    • Maculan, N.1    De Paula, G.G.2
  • 57
    • 14944353419 scopus 로고    scopus 로고
    • Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems
    • A. Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229-251, 2004a.
    • (2004) SIAM Journal on Optimization , vol.15 , Issue.1 , pp. 229-251
    • Nemirovski, A.1
  • 60
    • 34548480020 scopus 로고
    • A method of solving a convex programming problem with convergence rate o(1/k2)
    • Y. Nesterov. A method of solving a convex programming problem with convergence rate o(1/k2). Soviet Mathematics Doklady, 27(2):372-376, 1983.
    • (1983) Soviet Mathematics Doklady , vol.27 , Issue.2 , pp. 372-376
    • Nesterov, Y.1
  • 61
    • 0004102632 scopus 로고    scopus 로고
    • CORE Discussion Papers 1997019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE
    • Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic optimization. CORE Discussion Papers 1997019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), 1997.
    • (1997) Quality of Semidefinite Relaxation for Nonconvex Quadratic Optimization
    • Nesterov, Y.1
  • 63
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103(1):127-152, 2004b.
    • (2004) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 64
    • 67651063011 scopus 로고    scopus 로고
    • Core discussion papers, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE
    • Y. Nesterov. Gradient methods for minimizing composite objective function. Core discussion papers, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), 2007.
    • (2007) Gradient Methods for Minimizing Composite Objective Function
    • Nesterov, Y.1
  • 65
    • 84865692149 scopus 로고    scopus 로고
    • Efficiency of coordinate descent methods on huge-scale optimization problems
    • Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization, 22:341-362, 2012.
    • (2012) SIAM Journal on Optimization , vol.22 , pp. 341-362
    • Nesterov, Y.1
  • 67
    • 0040737323 scopus 로고
    • Location of the maximum on unimodal surfaces
    • D. Newman. Location of the maximum on unimodal surfaces. Journal of the ACM, 12(3):395-398, 1965.
    • (1965) Journal of the ACM , vol.12 , Issue.3 , pp. 395-398
    • Newman, D.1
  • 75
    • 0033541884 scopus 로고    scopus 로고
    • Random vectors in the isotropic position
    • M. Rudelson. Random vectors in the isotropic position. Journal of Functional Analysis, 164:60-72, 1999.
    • (1999) Journal of Functional Analysis , vol.164 , pp. 60-72
    • Rudelson, M.1
  • 79
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Journal of Machine Learning Research, 14:567-599, 2013a.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2
  • 82
    • 84983179282 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Series B (Methodological
    • R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):pp. 267-288, 1996.
    • (1996) Journal of the Royal Statistical Society , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 85
    • 0024769505 scopus 로고
    • A new algorithm for minimizing convex functions over convex sets. In Foundations of Computer Science, 1989
    • P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. In Foundations of Computer Science, 1989., 30th Annual Symposium on, pages 338-343, 1989.
    • (1989) 30th Annual Symposium , pp. 338-343
    • Vaidya, P.M.1
  • 86
    • 0001536423 scopus 로고    scopus 로고
    • A new algorithm for minimizing convex functions over convex sets
    • P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Mathematical programming, 73(3):291-341, 1996.
    • (1996) Mathematical Programming , vol.73 , Issue.3 , pp. 291-341
    • Vaidya, P.M.1
  • 88
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11:2543-2596, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2543-2596
    • Xiao, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.