-
1
-
-
84965102005
-
Practical and optimal LSH for angular distance
-
Andoni, Alexandr, Indyk, Piotr, Laarhoven, Thijs, Razenshteyn, Ilya, and Schmidt, Ludwig. Practical and optimal LSH for angular distance. In Advances in Neural Information Processing Systems (NIPS). 2015.
-
(2015)
Advances in Neural Information Processing Systems (NIPS)
-
-
Andoni, A.1
Indyk, P.2
Laarhoven, T.3
Razenshteyn, I.4
Schmidt, L.5
-
2
-
-
84989191960
-
Quasi-Monte Carlo feature maps for shiftinvariant kernels
-
Avron, Haim, Sindhwani, Vikas, Yang, Jiyan, and Mahoney, Michael W. Quasi-Monte Carlo feature maps for shiftinvariant kernels. The Journal of Machine Learning Research, 17(1):4096-4133, 2016.
-
(2016)
The Journal of Machine Learning Research
, vol.17
, Issue.1
, pp. 4096-4133
-
-
Avron, H.1
Sindhwani, V.2
Yang, J.3
Mahoney, M.W.4
-
3
-
-
85015444377
-
-
Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John, Tang, Jie, and Zaremba, Wojciech. OpenAI Gym, 2016.
-
(2016)
OpenAI Gym
-
-
Brockman, G.1
Cheung, V.2
Pettersson, L.3
Schneider, J.4
Schulman, J.5
Tang, J.6
Zaremba, W.7
-
4
-
-
85011514513
-
Monte Carlo and quasi-Monte Carlo methods
-
Caflisch, Russel E. Monte Carlo and quasi-Monte Carlo methods. Acta numerica, 7:1-49, 1998.
-
(1998)
Acta Numerica
, vol.7
, pp. 1-49
-
-
Caflisch, R.E.1
-
6
-
-
67650355939
-
-
Siam
-
Conn, Andrew R, Scheinberg, Katya, and Vicente, Luis N. Introduction to derivative-free optimization, volume 8. Siam, 2009.
-
(2009)
Introduction to Derivative-free Optimization
, vol.8
-
-
Conn, A.R.1
Scheinberg, K.2
Vicente, L.N.3
-
7
-
-
79952455758
-
-
Cambridge University Press, New York, NY, USA
-
Dick, Josef and Pillichshammer, Friedrich. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, New York, NY, USA, 2010.
-
(2010)
Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration
-
-
Dick, J.1
Pillichshammer, F.2
-
8
-
-
84965175092
-
-
Han, Song, Mao, Huizi, and Dally, William J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint:1510.00149, 2015.
-
(2015)
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
-
-
Han, S.1
Mao, H.2
Dally, W.J.3
-
9
-
-
0042879997
-
Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)
-
March
-
Hansen, Nikolaus, Muller, Sibylle D., and Koumoutsakos, Petros. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evol. Comput., 11(1):1-18, March 2003.
-
(2003)
Evol. Comput.
, vol.11
, Issue.1
, pp. 1-18
-
-
Hansen, N.1
Muller, S.D.2
Koumoutsakos, P.3
-
12
-
-
85050593634
-
-
Lehman, Joel, Chen, Jay, Clune, Jeff, and Stanley, Kenneth O. ES is more than just a traditional finite difference approximator. arXiv preprint:1712.06568, 2017.
-
(2017)
Es is More than Just a Traditional Finite Difference Approximator
-
-
Lehman, J.1
Chen, J.2
Clune, J.3
Stanley, K.O.4
-
13
-
-
84965135289
-
-
Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David, and Wierstra, Daan. Continuous control with deep reinforcement learning. arXiv preprint:1509.02971, 2015.
-
(2015)
Continuous Control with Deep Reinforcement Learning
-
-
Lillicrap, T.P.1
Hunt, J.J.2
Pritzel, A.3
Heess, N.4
Erez, T.5
Tassa, Y.6
Silver, D.7
Wierstra, D.8
-
14
-
-
68949099095
-
Benchmarking derivative-free optimization algorithms
-
More, Jorge J. and Wild, Stefan M. Benchmarking derivative-free optimization algorithms. SIAM Journal on Optimization, 20(1):172-191, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.20
, Issue.1
, pp. 172-191
-
-
More, J.J.1
Wild, S.M.2
-
15
-
-
84948964679
-
Random gradientfree minimization of convex functions
-
April
-
Nesterov, Yurii and Spokoiny, Vladimir. Random gradientfree minimization of convex functions. Found. Comput. Math., 17(2):527-566, April 2017. ISSN 1615-3375.
-
(2017)
Found. Comput. Math.
, vol.17
, Issue.2
, pp. 527-566
-
-
Nesterov, Y.1
Spokoiny, V.2
-
16
-
-
84890454527
-
Low-rank matrix factorization for deep neural network training with high-dimensional output targets
-
Sainath, Tara N, Kingsbury, Brian, Sindhwani, Vikas, Arisoy, Ebru, and Ramabhadran, Bhuvana. Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.
-
(2013)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
-
-
Sainath, T.N.1
Kingsbury, B.2
Sindhwani, V.3
Arisoy, E.4
Ramabhadran, B.5
-
17
-
-
85031121087
-
-
Salimans, Tim, Ho, Jonathan, Chen, Xi, Sidor, Szymon, and Sutskever, Ilya. Evolution strategies as a scalable alternative to reinforcement learning. 2017.
-
(2017)
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
-
-
Salimans, T.1
Ho, J.2
Chen, X.3
Sidor, S.4
Sutskever, I.5
-
18
-
-
84969963490
-
Trust region policy optimization
-
Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan, Michael, and Moritz, Philipp. Trust region policy optimization. In International Conference on Machine Learning (ICML), 2015.
-
(2015)
International Conference on Machine Learning (ICML)
-
-
Schulman, J.1
Levine, S.2
Abbeel, P.3
Jordan, M.4
Moritz, P.5
-
19
-
-
85041194636
-
-
Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, and Klimov, Oleg. Proximal policy optimization algorithms. arXiv preprint:1707.06347, 2017.
-
(2017)
Proximal Policy Optimization Algorithms
-
-
Schulman, J.1
Wolski, F.2
Dhariwal, P.3
Radford, A.4
Klimov, O.5
-
22
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8:229-256, 1992.
-
(1992)
Machine Learning
, vol.8
, pp. 229-256
-
-
Williams, R.J.1
-
23
-
-
85019219738
-
Orthogonal random features
-
Yu, Felix X, Suresh, Ananda Theertha, Choromanski, Krzysztof M, Holtmann-Rice, Daniel N, and Kumar, Sanjiv. Orthogonal random features. In Advances in Neural Information Processing Systems (NIPS). 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
-
-
Yu, F.X.1
Suresh, A.T.2
Choromanski, K.M.3
Holtmann-Rice, D.N.4
Kumar, S.5
|