-
1
-
-
34548850872
-
A survey on clustering algorithms for wireless sensor networks
-
A. A. Abbasi and M. Younis. A survey on clustering algorithms for wireless sensor networks. Computer communications, 30(14):2826–2841, 2007.
-
(2007)
Computer Communications
, vol.30
, Issue.14
, pp. 2826-2841
-
-
Abbasi, A.A.1
Younis, M.2
-
2
-
-
85072254591
-
Efficient approaches for escaping higher order saddle points in non-convex optimization
-
A. Anandkumar and R. Ge. Efficient approaches for escaping higher order saddle points in non-convex optimization. In Proceedings of the 29th Conference on Learning Theory, pages 81–102, 2016.
-
(2016)
Proceedings of the 29th Conference on Learning Theory
, pp. 81-102
-
-
Anandkumar, A.1
Ge, R.2
-
3
-
-
84908049572
-
Tensor decompositions for learning latent variable models
-
A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for learning latent variable models. Journal of Machine Learning Research, 15: 2773–2832, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 2773-2832
-
-
Anandkumar, A.1
Ge, R.2
Hsu, D.3
Kakade, S.M.4
Telgarsky, M.5
-
4
-
-
84990975264
-
Computing a nonnegative matrix factorization - provably
-
S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization - provably. SIAM J. Comput., 45(4):1582–1611, 2016.
-
(2016)
SIAM J. Comput.
, vol.45
, Issue.4
, pp. 1582-1611
-
-
Arora, S.1
Ge, R.2
Kannan, R.3
Moitra, A.4
-
7
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In Advances in Neural Information Processing Systems 19, pages 153–160, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
9
-
-
84899631041
-
Submodular maximization with cardinality constraints
-
N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. Submodular maximization with cardinality constraints. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1433–1452, 2014.
-
(2014)
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 1433-1452
-
-
Buchbinder, N.1
Feldman, M.2
Naor, J.3
Schwartz, R.4
-
10
-
-
84945963122
-
A tight linear time (1/2)-approximation for unconstrained submodular maximization
-
N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5): 1384–1402, 2015.
-
(2015)
SIAM J. Comput.
, vol.44
, Issue.5
, pp. 1384-1402
-
-
Buchbinder, N.1
Feldman, M.2
Naor, J.3
Schwartz, R.4
-
11
-
-
84855599508
-
Maximizing a monotone submodular function subject to a matroid constraint
-
G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing, 40 (6):1740–1766, 2011.
-
(2011)
SIAM Journal on Computing
, vol.40
, Issue.6
, pp. 1740-1766
-
-
Calinescu, G.1
Chekuri, C.2
Pál, M.3
Vondrák, J.4
-
12
-
-
85024362666
-
Subquadratic submodular function minimization
-
D. Chakrabarty, Y. T. Lee, A. Sidford, and S. C. Wong. Subquadratic submodular function minimization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1220–1231, 2017.
-
(2017)
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
, pp. 1220-1231
-
-
Chakrabarty, D.1
Lee, Y.T.2
Sidford, A.3
Wong, S.C.4
-
13
-
-
84920742613
-
Submodular function maximization via the multilinear relaxation and contention resolution schemes
-
C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM Journal on Computing, 43(6):1831–1879, 2014.
-
(2014)
SIAM Journal on Computing
, vol.43
, Issue.6
, pp. 1831-1879
-
-
Chekuri, C.1
Vondrák, J.2
Zenklusen, R.3
-
16
-
-
85010743821
-
Designing smoothing functions for improved worst-case competitive ratio in online optimization
-
R. Eghbali and M. Fazel. Designing smoothing functions for improved worst-case competitive ratio in online optimization. In Advances in Neural Information Processing Systems 29, pages 3279–3287, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, vol.29
, pp. 3279-3287
-
-
Eghbali, R.1
Fazel, M.2
-
18
-
-
0032108328
-
A threshold of ln n for approximating set cover
-
U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–652, 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.4
, pp. 634-652
-
-
Feige, U.1
-
19
-
-
80053189937
-
Maximizing non-monotone submodular functions
-
U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.
-
(2011)
SIAM Journal on Computing
, vol.40
, Issue.4
, pp. 1133-1153
-
-
Feige, U.1
Mirrokni, V.S.2
Vondrak, J.3
-
23
-
-
84984704687
-
Escaping from saddle points–online stochastic gradient for tensor decomposition
-
R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points–online stochastic gradient for tensor decomposition. In Proceedings of The 28th Conference on Learning Theory, pages 797–842, 2015.
-
(2015)
Proceedings of the 28th Conference on Learning Theory
, pp. 797-842
-
-
Ge, R.1
Huang, F.2
Jin, C.3
Yuan, Y.4
-
30
-
-
85041688686
-
How to escape saddle points efficiently
-
C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to escape saddle points efficiently. In Proceedings of the 34th International Conference on Machine Learning, pages 1724–1732, 2017.
-
(2017)
Proceedings of the 34th International Conference on Machine Learning
, pp. 1724-1732
-
-
Jin, C.1
Ge, R.2
Netrapalli, P.3
Kakade, S.M.4
Jordan, M.I.5
-
31
-
-
85046998009
-
Stochastic submodular maximization: The case of coverage functions
-
M. R. Karimi, M. Lucic, S. H. Hassani, and A. Krause. Stochastic submodular maximization: The case of coverage functions. In Advances in Neural Information Processing Systems 30, pages 6856–6866, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, vol.30
, pp. 6856-6866
-
-
Karimi, M.R.1
Lucic, M.2
Hassani, S.H.3
Krause, A.4
-
33
-
-
35348964197
-
Ad-words and generalized online matching
-
A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Ad-words and generalized online matching. Journal of the ACM, 54(5):22, 2007.
-
(2007)
Journal of the ACM
, vol.54
, Issue.5
, pp. 22
-
-
Mehta, A.1
Saberi, A.2
Vazirani, U.3
Vazirani, V.4
-
35
-
-
85023764368
-
Large-scale nonconvex stochastic optimization by doubly stochastic successive convex approximation
-
A. Mokhtari, A. Koppel, G. Scutari, and A. Ribeiro. Large-scale nonconvex stochastic optimization by doubly stochastic successive convex approximation. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 4701–4705, 2017.
-
(2017)
2017 IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 4701-4705
-
-
Mokhtari, A.1
Koppel, A.2
Scutari, G.3
Ribeiro, A.4
-
36
-
-
0023452095
-
Some np-complete problems in quadratic and nonlinear programming
-
K. G. Murty and S. N. Kabadi. Some np-complete problems in quadratic and nonlinear programming. Mathematical programming, 39(2):117–129, 1987.
-
(1987)
Mathematical Programming
, vol.39
, Issue.2
, pp. 117-129
-
-
Murty, K.G.1
Kabadi, S.N.2
-
37
-
-
0000095809
-
An analysis of approximations for maximizing submodular set functions–i
-
G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions–I. Mathematical Programming, 14(1):265–294, 1978.
-
(1978)
Mathematical Programming
, vol.14
, Issue.1
, pp. 265-294
-
-
Nemhauser, G.L.1
Wolsey, L.A.2
Fisher, M.L.3
-
38
-
-
84937876583
-
Non-convex robust PCA
-
P. Netrapalli, U. N. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain. Non-convex robust PCA. In Advances in Neural Information Processing Systems 27, pages 1107–1115, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 1107-1115
-
-
Netrapalli, P.1
Niranjan, U.N.2
Sanghavi, S.3
Anandkumar, A.4
Jain, P.5
-
40
-
-
85015187744
-
Stochastic Frank-Wolfe methods for nonconvex optimization
-
IEEE
-
S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Stochastic Frank-Wolfe methods for nonconvex optimization. In 54th Annual Allerton Conference on Communication, Control, and Computing, pages 1244–1251. IEEE, 2016.
-
(2016)
54th Annual Allerton Conference on Communication, Control, and Computing
, pp. 1244-1251
-
-
Reddi, S.J.1
Sra, S.2
Póczos, B.3
Smola, A.4
-
41
-
-
0008757519
-
Feasible direction methods for stochastic programming problems
-
A. Ruszczyński. Feasible direction methods for stochastic programming problems. Mathematical Programming, 19 (1):220–229, 1980.
-
(1980)
Mathematical Programming
, vol.19
, Issue.1
, pp. 220-229
-
-
Ruszczyński, A.1
-
42
-
-
37549002539
-
A merit function approach to the subgradient method with averaging
-
A. Ruszczyński. A merit function approach to the subgradient method with averaging. Optimisation Methods and Software, 23(1):161–172, 2008.
-
(2008)
Optimisation Methods and Software
, vol.23
, Issue.1
, pp. 161-172
-
-
Ruszczyński, A.1
-
44
-
-
84919785397
-
Optimal budget allocation: Theoretical guarantee and efficient algorithm
-
T. Soma, N. Kakimura, K. Inaba, and K. Kawarabayashi. Optimal budget allocation: Theoretical guarantee and efficient algorithm. In Proceedings of the 31th International Conference on Machine Learning, pages 351–359, 2014.
-
(2014)
Proceedings of the 31th International Conference on Machine Learning
, pp. 351-359
-
-
Soma, T.1
Kakimura, N.2
Inaba, K.3
Kawarabayashi, K.4
-
46
-
-
85067807422
-
Probabilistic submodular maximization in sub-linear time
-
S. Stan, M. Zadimoghaddam, A. Krause, and A. Karbasi. Probabilistic submodular maximization in sub-linear time. In Proceedings of the 34th International Conference on Machine Learning, pages 3241–3250, 2017.
-
(2017)
Proceedings of the 34th International Conference on Machine Learning
, pp. 3241-3250
-
-
Stan, S.1
Zadimoghaddam, M.2
Krause, A.3
Karbasi, A.4
-
50
-
-
84871960598
-
Submodularity and curvature: The optimal algorithm (combinatorial optimization and discrete algorithms)
-
J. Vondrák. Submodularity and curvature: The optimal algorithm (combinatorial optimization and discrete algorithms). RIMS Kokyuroku Bessatsu, B23:253–266, 2010.
-
(2010)
RIMS Kokyuroku Bessatsu
, vol.B23
, pp. 253-266
-
-
Vondrák, J.1
-
51
-
-
51249182537
-
An analysis of the greedy algorithm for the submodular set covering problem
-
L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica, 2(4): 385–393, 1982.
-
(1982)
Combinatorica
, vol.2
, Issue.4
, pp. 385-393
-
-
Wolsey, L.A.1
-
52
-
-
84968830543
-
A parallel decomposition method for nonconvex stochastic multi-agent optimization problems
-
Y. Yang, G. Scutari, D. P. Palomar, and M. Pesavento. A parallel decomposition method for nonconvex stochastic multi-agent optimization problems. IEEE Transactions on Signal Processing, 64(11):2949–2964, 2016.
-
(2016)
IEEE Transactions on Signal Processing
, vol.64
, Issue.11
, pp. 2949-2964
-
-
Yang, Y.1
Scutari, G.2
Palomar, D.P.3
Pesavento, M.4
|