메뉴 건너뛰기




Volumn 23, Issue 4, 2013, Pages 2341-2368

Stochastic first- and zeroth-order methods for nonconvex stochastic programming

Author keywords

Nonconvex optimization; Simulation based optimization; Stochastic approximation; Stochastic programming

Indexed keywords

NONCONVEX OPTIMIZATION; NONCONVEX STOCHASTIC PROGRAMMING; NONLINEAR PROGRAMMING PROBLEM; OPTIMAL RATE OF CONVERGENCE; SIMULATION-BASED OPTIMIZATIONS; STATIONARY POINTS; STOCHASTIC APPROXIMATIONS; STOCHASTIC GRADIENT;

EID: 84892854517     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/120880811     Document Type: Article
Times cited : (1621)

References (41)
  • 2
    • 79251493375 scopus 로고    scopus 로고
    • On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization
    • C. Cartis, N. I.M. Gould, and Ph. L. Toint, On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization, SIAM J. Optim., 20 (2010), pp. 2833-2852.
    • (2010) SIAM J. Optim. , vol.20 , pp. 2833-2852
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 3
    • 84861621132 scopus 로고    scopus 로고
    • On the oracle complexity of first-order and derivative-free algorithms for smooth nonconvex minimization
    • C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the oracle complexity of first-order and derivative-free algorithms for smooth nonconvex minimization, SIAM J. Optim., 22 (2012), pp. 66-86.
    • (2012) SIAM J. Optim. , vol.22 , pp. 66-86
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 4
    • 0000792517 scopus 로고
    • On a stochastic approximation method
    • K. L. Chung, On a stochastic approximation method, Ann. Math. Statist., 25 (1954), pp. 463-483.
    • (1954) Ann. Math. Statist. , vol.25 , pp. 463-483
    • Chung, K.L.1
  • 6
    • 84865694209 scopus 로고    scopus 로고
    • Randomized smoothing for stochastic optimization
    • J. C. Duchi, P. L. Bartlett, and M. J. Wainwright, Randomized smoothing for stochastic optimization, SIAM J. Optim., 22 (2012), pp. 674-701.
    • (2012) SIAM J. Optim. , vol.22 , pp. 674-701
    • Duchi, J.C.1    Bartlett, P.L.2    Wainwright, M.J.3
  • 7
    • 0012260296 scopus 로고    scopus 로고
    • Optimization for simulation: Theory vs. Practice
    • M. Fu, Optimization for simulation: Theory vs. practice, INFORMS J. Comput., 14 (2002), pp. 192-215.
    • (2002) INFORMS J. Comput. , vol.14 , pp. 192-215
    • Fu, M.1
  • 9
    • 84880321255 scopus 로고    scopus 로고
    • Smoothing and worst-case complexity for direct-search methods in nonsmooth optimization
    • R. Garmanjani and L. N. Vicente, Smoothing and worst-case complexity for direct-search methods in nonsmooth optimization, IMA J. Numer. Anal., 33 (2013), pp. 1008-1028.
    • (2013) IMA J. Numer. Anal. , vol.33 , pp. 1008-1028
    • Garmanjani, R.1    Vicente, L.N.2
  • 10
    • 84892856128 scopus 로고    scopus 로고
    • Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: Shrinking procedures and optimal algorithms
    • S. Ghadimi and G. Lan, Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: Shrinking procedures and optimal algorithms, SIAM J. Optim., 23 (2013), pp. 2061-2089.
    • (2013) SIAM J. Optim. , vol.23 , pp. 2061-2089
    • Ghadimi, S.1    Lan, G.2
  • 11
    • 84871576447 scopus 로고    scopus 로고
    • Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: A generic algorithmic framework
    • S. Ghadimi and G. Lan, Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: A generic algorithmic framework, SIAM J. Optim., 22 (2012), pp. 1469-1492.
    • (2012) SIAM J. Optim. , vol.22 , pp. 1469-1492
    • Ghadimi, S.1    Lan, G.2
  • 14
    • 31344435933 scopus 로고    scopus 로고
    • Recursive aggregation of estimators via the mirror descent algorithm with average
    • A. Juditsky, A. Nazin, A. B. Tsybakov, and N. Vayatis, Recursive aggregation of estimators via the mirror descent algorithm with average, Prob. Inf. Transm., 41 (2005), pp. 368-384.
    • (2005) Prob. Inf. Transm. , vol.41 , pp. 368-384
    • Juditsky, A.1    Nazin, A.2    Tsybakov, A.B.3    Vayatis, N.4
  • 17
    • 0036013019 scopus 로고    scopus 로고
    • The sample average approximation method for stochastic discrete optimization
    • A. J. Kleywegt, A. Shapiro, and T. Homem de Mello, The sample average approximation method for stochastic discrete optimization, SIAM J. Optim., 12 (2001), pp. 479-502.
    • (2001) SIAM J. Optim. , vol.12 , pp. 479-502
    • Kleywegt, A.J.1    Shapiro, A.2    Homem De-Mello, T.3
  • 18
    • 84862273593 scopus 로고    scopus 로고
    • An optimal method for stochastic composite optimization
    • G. Lan, An optimal method for stochastic composite optimization, Math. Program., 133 (2012), pp. 365-397.
    • (2012) Math. Program. , vol.133 , pp. 365-397
    • Lan, G.1
  • 19
    • 84865639277 scopus 로고    scopus 로고
    • Validation analysis of mirror descent stochastic approximation method
    • G. Lan, A. S. Nemirovski, and A. Shapiro, Validation analysis of mirror descent stochastic approximation method, Math. Program., 134 (2012), pp. 425-458.
    • (2012) Math. Program. , vol.134 , pp. 425-458
    • Lan, G.1    Nemirovski, A.S.2    Shapiro, A.3
  • 20
    • 0000997790 scopus 로고
    • A unified view of the IPA, SF, and LR gradient estimation techniques
    • P. L Écuyer, A unified view of the IPA, SF, and LR gradient estimation techniques, Management Sci., 36 (1990), pp. 1364-1383.
    • (1990) Management Sci. , vol.36 , pp. 1364-1383
    • Écuyer, P.L.1
  • 22
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent in function space
    • L. Mason, J. Baxter, P. Bartlett, and M. Frean, Boosting algorithms as gradient descent in function space, in Proceedings of NIPS 12, 1999, pp. 512-518.
    • (1999) Proceedings of NIPS , vol.12 , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 23
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. S. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Optim., 19 (2009), pp. 1574-1609.
    • (2009) SIAM J. Optim. , vol.19 , pp. 1574-1609
    • Nemirovski, A.S.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 24
  • 27
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • Y. E. Nesterov, Primal-dual subgradient methods for convex problems, Math. Program., 120 (2006), pp. 221-259.
    • (2006) Math. Program. , vol.120 , pp. 221-259
    • Nesterov, Y.E.1
  • 28
    • 84860610528 scopus 로고    scopus 로고
    • Technical report, Center for Operations Research and Econometrics (CORE), Catholic University of Louvain
    • Y. E. Nesterov, Random Gradient-Free Minimization of Convex Functions, Technical report, Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, 2010.
    • (2010) Random Gradient-Free Minimization of Convex Functions
    • Nesterov, Y.E.1
  • 29
    • 44349128988 scopus 로고    scopus 로고
    • Confidence level solutions for stochastic programming
    • Y. E. Nesterov and J. P. Vial, Confidence level solutions for stochastic programming, J. IFAC, 44 (2008), pp. 1559-1568.
    • (2008) J. Ifac , vol.44 , pp. 1559-1568
    • Nesterov, Y.E.1    Vial, J.P.2
  • 31
    • 0000828406 scopus 로고
    • New stochastic approximation type procedures
    • B. T. Polyak, New stochastic approximation type procedures, Avtomat. i Telemekh., 7 (1990), pp. 98-107.
    • (1990) Avtomat. I Telemekh. , vol.7 , pp. 98-107
    • Polyak, B.T.1
  • 32
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • B. T. Polyak and A. B. Juditsky, Acceleration of stochastic approximation by averaging, SIAM J. Control Optim., 30 (1992), pp. 838-855.
    • (1992) SIAM J. Control Optim. , vol.30 , pp. 838-855
    • Polyak, B.T.1    Juditsky, A.B.2
  • 33
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist., 22 (1951), pp. 400-407.
    • (1951) Ann. Math. Statist. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 36
    • 61349175317 scopus 로고    scopus 로고
    • Recursive trust-region methods for multiscale nonlinear optimization
    • A. Sartenaer, S. Gratton and Ph. L. Toint, Recursive trust-region methods for multiscale nonlinear optimization, SIAM J. Optim., 19 (2008), pp. 414-444.
    • (2008) SIAM J. Optim. , vol.19 , pp. 414-444
    • Sartenaer, A.1    Gratton, S.2    Toint, P.L.3
  • 37
    • 0000431134 scopus 로고
    • Asymptotic distribution of stochastic approximation
    • J. Sacks, Asymptotic distribution of stochastic approximation, Ann. Math. Statist., 29 (1958), pp. 373-409.
    • (1958) Ann. Math. Statist. , vol.29 , pp. 373-409
    • Sacks, J.1
  • 38
    • 28044445224 scopus 로고    scopus 로고
    • Monte carlo sampling methods
    • A. Ruszczyński and A. Shapiro, eds., North-Holland, Amsterdam
    • A. Shapiro, Monte Carlo sampling methods, in Stochastic Programming, A. Ruszczyński and A. Shapiro, eds., North-Holland, Amsterdam, 2003.
    • (2003) Stochastic Programming
    • Shapiro, A.1
  • 40
    • 85130190749 scopus 로고    scopus 로고
    • Worst case complexity of direct search
    • L. N. Vicente, Worst case complexity of direct search, EURO J. Comput. Optim., 1 (2013), pp. 143-153.
    • (2013) EURO J. Comput. Optim. , vol.1 , pp. 143-153
    • Vicente, L.N.1
  • 41
    • 84355162114 scopus 로고    scopus 로고
    • On stochastic gradient and subgradient methods with adaptive steplength sequences
    • F. Yousefian, A. Nedic, and U. V. Shanbhag, On stochastic gradient and subgradient methods with adaptive steplength sequences, Automatica, 48 (2012), pp. 56-67.
    • (2012) Automatica , vol.48 , pp. 56-67
    • Yousefian, F.1    Nedic, A.2    Shanbhag, U.V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.