메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2414-2422

Universal correspondence network

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION;

EID: 85011257554     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (422)

References (36)
  • 4
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 5
    • 84959195732 scopus 로고
    • Signature verification using a siamese time delay neural network
    • J. Bromley, I. Guyon, Y. Lecun, E. Säckinger, and R. Shah. Signature verification using a Siamese time delay neural network. In NIPS, 1994.
    • (1994) NIPS
    • Bromley, J.1    Guyon, I.2    Lecun, Y.3    Säckinger, E.4    Shah, R.5
  • 6
    • 84887338408 scopus 로고    scopus 로고
    • A naturalistic open source movie for optical flow evaluation
    • D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
    • (2012) ECCV
    • Butler, D.J.1    Wulff, J.2    Stanley, G.B.3    Black, M.J.4
  • 7
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • June
    • S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In CVPR, Volume 1, June 2005.
    • (2005) CVPR , vol.1
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 10
    • 78651079861 scopus 로고    scopus 로고
    • K-nearest neighbor search: Fast GPU-based implementations and application to high-dimensional feature matching
    • V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud. K-nearest neighbor search: Fast gpu-based implementations and application to high-dimensional feature matching. In ICIP, 2010.
    • (2010) ICIP
    • Garcia, V.1    Debreuve, E.2    Nielsen, F.3    Barlaud, M.4
  • 11
  • 12
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006.
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 15
    • 84959212200 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • H. Kaiming, Z. Xiangyu, R. Shaoqing, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • Kaiming, H.1    Xiangyu, Z.2    Shaoqing, R.3    Sun, J.4
  • 18
    • 84887382752 scopus 로고    scopus 로고
    • Deformable spatial pyramid matching for fast dense correspondences
    • IEEE
    • J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial pyramid matching for fast dense correspondences. In CVPR. IEEE, 2013.
    • (2013) CVPR
    • Kim, J.1    Liu, C.2    Sha, F.3    Grauman, K.4
  • 19
    • 79953049203 scopus 로고    scopus 로고
    • Sift flow: Dense correspondence across scenes and its applications
    • May
    • C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. PAMI, 33(5), May 2011.
    • (2011) PAMI , vol.33 , Issue.5
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 20
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 21
    • 84937874835 scopus 로고    scopus 로고
    • Do convnets learn correspondence?
    • J. Long, N. Zhang, and T. Darrell. Do convnets learn correspondence? In NIPS, 2014.
    • (2014) NIPS
    • Long, J.1    Zhang, N.2    Darrell, T.3
  • 22
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.G.1
  • 23
    • 0041416425 scopus 로고    scopus 로고
    • Robust wide baseline stereo from maximally stable extremal regions
    • J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. In BMVC, 2002.
    • (2002) BMVC
    • Matas, J.1    Chum, O.2    Urban, M.3    Pajdla, T.4
  • 24
    • 84959203005 scopus 로고    scopus 로고
    • Object scene flow for autonomous vehicles
    • M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In CVPR, 2015.
    • (2015) CVPR
    • Menze, M.1    Geiger, A.2
  • 26
    • 84946751287 scopus 로고    scopus 로고
    • Facenet: A unified embedding for face recognition and clustering
    • F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, 2015.
    • (2015) CVPR
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 28
    • 77949875753 scopus 로고    scopus 로고
    • DAISY: An efficient dense descriptor applied to wide baseline stereo
    • E. Tola, V. Lepetit, and P. Fua. DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo. PAMI, 2010.
    • (2010) PAMI
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 31
    • 85018917581 scopus 로고    scopus 로고
    • DAISY filter flow: A generalized approach to discrete dense correspondences
    • H. Yang, W. Y. Lin, and J. Lu. DAISY filter flow: A generalized approach to discrete dense correspondences. In CVPR, 2014.
    • (2014) CVPR
    • Yang, H.1    Lin, W.Y.2    Lu, J.3
  • 32
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. PAMI, 2013.
    • (2013) PAMI
    • Yang, Y.1    Ramanan, D.2
  • 33
    • 85018874905 scopus 로고    scopus 로고
    • LIFT: Learned invariant feature transform
    • K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. LIFT: Learned Invariant Feature Transform. In ECCV, 2016.
    • (2016) ECCV
    • Yi, K.M.1    Trulls, E.2    Lepetit, V.3    Fua, P.4
  • 34
    • 84959179619 scopus 로고    scopus 로고
    • Learning to compare image patches via convolutional neural networks
    • S. Zagoruyko and N. Komodakis. Learning to Compare Image Patches via Convolutional Neural Networks. CVPR, 2015.
    • (2015) CVPR
    • Zagoruyko, S.1    Komodakis, N.2
  • 35
    • 84952343030 scopus 로고    scopus 로고
    • Computing the stereo matching cost with a CNN
    • J. Zbontar and Y. LeCun. Computing the stereo matching cost with a CNN. In CVPR, 2015.
    • (2015) CVPR
    • Zbontar, J.1    LeCun, Y.2
  • 36
    • 84959209973 scopus 로고    scopus 로고
    • Flowweb: Joint image set alignment by weaving consistent, pixel-wise correspondences
    • June
    • T. Zhou, Y. Jae Lee, S. X. Yu, and A. A. Efros. Flowweb: Joint image set alignment by weaving consistent, pixel-wise correspondences. In CVPR, June 2015.
    • (2015) CVPR
    • Zhou, T.1    Jae Lee, Y.2    Yu, S.X.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.