메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1745-1752

Building part-based object detectors via 3D Geometry

Author keywords

3D object detection; 3D object understanding; 3D primitives; deformable part models; DPM; GDPM; geometry based representations; geometry models; geometry driven deformable part based model; object detection; surface normal prediction

Indexed keywords

DEFORMATION; GEOMETRY; OBJECT RECOGNITION;

EID: 84898771678     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.219     Document Type: Conference Paper
Times cited : (40)

References (33)
  • 1
    • 84885880085 scopus 로고    scopus 로고
    • Object detection using stronglysupervised deformable part models
    • H. Azizpour and I. Laptev. Object detection using stronglysupervised deformable part models. In ECCV, 2012.
    • (2012) In ECCV
    • Azizpour, H.1    Laptev, I.2
  • 2
    • 80052882128 scopus 로고    scopus 로고
    • Object recognition with hierarchical kernel descriptors
    • L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with hierarchical kernel descriptors. In CVPR, 2011.
    • (2011) In CVPR
    • Bo, L.1    Lai, K.2    Ren, X.3    Fox, D.4
  • 3
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose annotations. In ICCV, 2009.
    • (2009) In ICCV
    • Bourdev, L.1    Malik, J.2
  • 4
    • 84856684024 scopus 로고    scopus 로고
    • Strong supervision from weak annotation: Interactive training of deformable part models
    • S. Branson, S. Belongie, and P. Perona. Strong supervision from weak annotation: Interactive training of deformable part models. In ICCV, 2011.
    • (2011) In ICCV
    • Branson, S.1    Belongie, S.2    Perona, P.3
  • 5
    • 0019600232 scopus 로고
    • Symbolic reasoning among 3D models and 2D images
    • R. Brooks. Symbolic reasoning among 3D models and 2D images. Artificial Intelligence, 1981.
    • (1981) Artificial Intelligence
    • Brooks, R.1
  • 7
    • 84898803720 scopus 로고    scopus 로고
    • NEIL: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting visual knowledge from web data. In ICCV, 2013.
    • (2013) In ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 8
    • 34948895037 scopus 로고    scopus 로고
    • Virtual training for multi-view object class recognition
    • H. Chiu, L. Kaelbling, and T. Lozano-Perez. Virtual training for multi-view object class recognition. In CVPR, 2007.
    • (2007) In CVPR
    • Chiu, H.1    Kaelbling, L.2    Lozano-Perez, T.3
  • 9
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) In CVPR
    • Dalal, N.1    Triggs, B.2
  • 14
    • 84877784179 scopus 로고    scopus 로고
    • 3D object detection and viewpoint estimation with a deformable 3D cuboid model
    • S. Fidler, S. Dickinson, and R. Urtasun. 3D object detection and viewpoint estimation with a deformable 3D cuboid model. In NIPS, 2012.
    • (2012) In NIPS
    • Fidler, S.1    Dickinson, S.2    Urtasun, R.3
  • 15
    • 84898832490 scopus 로고    scopus 로고
    • Data-driven 3D primitives for single image understanding
    • D. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives for single image understanding. In ICCV, 2013.
    • (2013) In ICCV
    • Fouhey, D.1    Gupta, A.2    Hebert, M.3
  • 17
    • 84856653205 scopus 로고    scopus 로고
    • Discriminative mixture-of-templates for view-point classification
    • C. Gu and X. Ren. Discriminative mixture-of-templates for view-point classification. In ECCV, 2010.
    • (2010) In ECCV
    • Gu, C.1    Ren, X.2
  • 18
    • 80051958131 scopus 로고    scopus 로고
    • Thinking inside the box: Using appearance models and context based on room geometry
    • V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the box: Using appearance models and context based on room geometry. In ECCV, 2010.
    • (2010) In ECCV
    • Hedau, V.1    Hoiem, D.2    Forsyth, D.3
  • 19
    • 34547216923 scopus 로고    scopus 로고
    • Recovering surface layout from an image
    • D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image. IJCV, 2007.
    • (2007) IJCV
    • Hoiem, D.1    Efros, A.A.2    Hebert, M.3
  • 20
    • 84867340198 scopus 로고    scopus 로고
    • A scalable tree-based approach for joint object and pose recognition
    • K. Lai, L. Bo, X. Ren, and D. Fox. A scalable tree-based approach for joint object and pose recognition. In AAAI, 2011.
    • (2011) In AAAI
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 21
    • 84455201478 scopus 로고    scopus 로고
    • Sparse distance learning for object recognition combining RGB and depth information
    • K. Lai, L. Bo, X. Ren, and D. Fox. Sparse distance learning for object recognition combining RGB and depth information. In ICRA, 2011.
    • (2011) In ICRA
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 22
    • 85162555049 scopus 로고    scopus 로고
    • Transfer learning by borrowing examples for multiclass object detection
    • J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learning by borrowing examples for multiclass object detection. In NIPS, 2011.
    • (2011) In NIPS
    • Lim, J.1    Salakhutdinov, R.2    Torralba, A.3
  • 23
    • 0023313631 scopus 로고
    • Three-dimensional object recognition from single two-dimensional images
    • D. Lowe. Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence, 1987.
    • (1987) Artificial Intelligence
    • Lowe, D.1
  • 24
    • 0018275277 scopus 로고
    • Representation and recognition of the spatial organization of three-dimensional shapes
    • D. Marr and H. Nishihara. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. Roy. Soc., 1978.
    • (1978) Proc. Roy. Soc.
    • Marr, D.1    Nishihara, H.2
  • 25
    • 84881536861 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from RGBD images
    • P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation and support inference from RGBD images. In ECCV, 2012.
    • (2012) In ECCV
    • Silberman, P.K.N.1    Hoiem, D.2    Fergus, R.3
  • 27
    • 50649097874 scopus 로고    scopus 로고
    • 3D generic object categorization, localization and pose estimation
    • S. Savarese and L. Fei-Fei. 3D generic object categorization, localization and pose estimation. In ICCV, 2007.
    • (2007) In ICCV
    • Savarese, S.1    Fei-Fei, L.2
  • 28
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012.
    • (2012) In ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.3
  • 29
    • 84898454739 scopus 로고    scopus 로고
    • Back to the future: Learning shape models from 3D CAD data
    • M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning shape models from 3D CAD data. In BMVC, 2010.
    • (2010) In BMVC
    • Stark, M.1    Goesele, M.2    Schiele, B.3
  • 30
    • 70450199717 scopus 로고    scopus 로고
    • A multi-view probabilistic model for 3D object classes
    • M. Sun, H. Su, S. Savarese, and L. Fei-Fei. A multi-view probabilistic model for 3D object classes. In CVPR, 2009.
    • (2009) In CVPR
    • Sun, M.1    Su, H.2    Savarese, S.3    Fei-Fei, L.4
  • 31
    • 84866720197 scopus 로고    scopus 로고
    • Estimating the aspect layout of object categories
    • Y. Xiang and S. Savarese. Estimating the aspect layout of object categories. In CVPR, 2012.
    • (2012) In CVPR
    • Xiang, Y.1    Savarese, S.2
  • 32
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation with exible mixtures-of-parts
    • Y. Yang and D. Ramanan. Articulated pose estimation with exible mixtures-of-parts. In CVPR, 2011.
    • (2011) In CVPR
    • Yang, Y.1    Ramanan, D.2
  • 33
    • 84898436991 scopus 로고    scopus 로고
    • Do we need more training data or better models for object detection?
    • X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we need more training data or better models for object detection? In BMVC, 2012.
    • (2012) In BMVC
    • Zhu, X.1    Vondrick, C.2    Ramanan, D.3    Fowlkes, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.