메뉴 건너뛰기




Volumn , Issue , 2018, Pages 9339-9348

Improvements to Context Based Self-Supervised Learning

Author keywords

[No Author keywords available]

Indexed keywords

ABERRATIONS; BENCHMARKING; CLASSIFICATION (OF INFORMATION); COMPUTER VISION; NETWORK ARCHITECTURE; SUPERVISED LEARNING;

EID: 85062826302     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2018.00973     Document Type: Conference Paper
Times cited : (151)

References (49)
  • 2
    • 85048391632 scopus 로고    scopus 로고
    • Unsupervised learning by predicting noise
    • P. Bojanowski and A. Joulin. Unsupervised learning by predicting noise. In ICML, 2017.
    • (2017) ICML
    • Bojanowski, P.1    Joulin, A.2
  • 4
    • 84873601916 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In CoRR, 2012.
    • (2012) CoRR
    • Cireşan, D.1    Meier, U.2    Schmidhuber, J.3
  • 6
    • 85062863313 scopus 로고    scopus 로고
    • Four keys to identifying birds
    • Four keys to identifying birds. Cornell Lab of Ornithology: Bird Scope, 23 (2), 2009.
    • (2009) Cornell Lab of Ornithology: Bird Scope , vol.23 , Issue.2
  • 9
    • 84973916088 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
    • (2015) ICCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 10
    • 85041893548 scopus 로고    scopus 로고
    • Multi-task self-supervised visual learning
    • C. Doersch and A. Zisserman. Multi-task self-supervised visual learning. In ICCV, 2017.
    • (2017) ICCV
    • Doersch, C.1    Zisserman, A.2
  • 14
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • R. Girshick. Fast r-cnn. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 15
    • 85044262532 scopus 로고    scopus 로고
    • Self-supervised learning of visual features through embedding images into text topic spaces
    • L. Gomez, Y. Patel, M. Rusiñol, D. Karatzas, and C. V. Jawahar. Self-supervised learning of visual features through embedding images into text topic spaces. In CVPR, 2017.
    • (2017) CVPR
    • Gomez, L.1    Patel, Y.2    Rusiñol, M.3    Karatzas, D.4    Jawahar, C.V.5
  • 18
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 19
    • 84973897623 scopus 로고    scopus 로고
    • Learning image representation tied to ego-motion
    • D. Jayaraman and K. Grauman. Learning image representation tied to ego-motion. In ICCV, 2015.
    • (2015) ICCV
    • Jayaraman, D.1    Grauman, K.2
  • 21
    • 85050925867 scopus 로고    scopus 로고
    • Learning image representation by completing damaged jigsaw puzzles
    • D. Kim, D. Cho, D. Yoo, and I. S. Kweon. Learning image representation by completing damaged jigsaw puzzles. In WACV, 2018.
    • (2018) WACV
    • Kim, D.1    Cho, D.2    Yoo, D.3    Kweon, I.S.4
  • 22
    • 85083952350 scopus 로고    scopus 로고
    • Datadependent initializations of convolutional neural networks
    • P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Datadependent initializations of convolutional neural networks. In ICLR, 2016.
    • (2016) ICLR
    • Krähenbühl, P.1    Doersch, C.2    Donahue, J.3    Darrell, T.4
  • 23
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2013.
    • (2013) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 85041897195 scopus 로고    scopus 로고
    • Colorization as a proxy task for visual understanding
    • G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a proxy task for visual understanding. In CVPR, 2017.
    • (2017) CVPR
    • Larsson, G.1    Maire, M.2    Shakhnarovich, G.3
  • 25
    • 85041918226 scopus 로고    scopus 로고
    • Unsupervised representation learning by sorting sequences
    • H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang. Unsupervised representation learning by sorting sequences. In ICCV, 2017.
    • (2017) ICCV
    • Lee, H.-Y.1    Huang, J.-B.2    Singh, M.3    Yang, M.-H.4
  • 26
    • 85056371038 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by graph-based consistent constraints supplementary material
    • D. Li, W.-C. Hung, J.-B. Huang, S. Wang, N. Ahuja, and M.-H. Yang. Unsupervised visual representation learning by graph-based consistent constraints supplementary material. In ECCV, 2016.
    • (2016) ECCV
    • Li, D.1    Hung, W.-C.2    Huang, J.-B.3    Wang, S.4    Ahuja, N.5    Yang, M.-H.6
  • 28
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 29
    • 84990049823 scopus 로고    scopus 로고
    • Shuffle and learn: Unsupervised learning using temporal order verification
    • I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: Unsupervised learning using temporal order verification. In ECCV, 2016.
    • (2016) ECCV
    • Misra, I.1    Zitnick, C.L.2    Hebert, M.3
  • 30
    • 85041915299 scopus 로고    scopus 로고
    • A large contextual dataset for classification, detection and counting of cars with deep learning
    • T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye. A large contextual dataset for classification, detection and counting of cars with deep learning. In ECCV, 2016.
    • (2016) ECCV
    • Mundhenk, T.N.1    Konjevod, G.2    Sakla, W.A.3    Boakye, K.4
  • 31
    • 84986287885 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations by solving jigsaw puzzles
    • M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV, 2016.
    • (2016) ECCV
    • Noroozi, M.1    Favaro, P.2
  • 33
    • 85041930018 scopus 로고    scopus 로고
    • Representation learning by learning to count
    • M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by learning to count. In ICCV, 2017.
    • (2017) ICCV
    • Noroozi, M.1    Pirsiavash, H.2    Favaro, P.3
  • 38
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scaleimage recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scaleimage recognition. In CoRR, 2014.
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 41
    • 0018963696 scopus 로고
    • Margaret thatcher: A new illusion
    • P. Thompson. Margaret thatcher: A new illusion. Perception, 9 (4): 483-484, 1980.
    • (1980) Perception , vol.9 , Issue.4 , pp. 483-484
    • Thompson, P.1
  • 43
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 44
    • 85041911015 scopus 로고    scopus 로고
    • Transitive invariance for selfsupervised visual representation learning
    • X. Wang, K. He, and A. Gupta. Transitive invariance for selfsupervised visual representation learning. In ICCV, 2017.
    • (2017) ICCV
    • Wang, X.1    He, K.2    Gupta, A.3
  • 46
    • 84959184327 scopus 로고    scopus 로고
    • A large-scale car dataset for fine-grained categorization and verification
    • L. Yang, P. Luo, C. C. Loy, and X. Tang. A large-scale car dataset for fine-grained categorization and verification. In CVPR, 2015.
    • (2015) CVPR
    • Yang, L.1    Luo, P.2    Loy, C.C.3    Tang, X.4
  • 48
    • 85044323260 scopus 로고    scopus 로고
    • Split-brain autoencoders: Unsupervised learning by cross-channel prediction
    • R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In CVPR, 2017.
    • (2017) CVPR
    • Zhang, R.1    Isola, P.2    Efros, A.A.3
  • 49
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.