-
2
-
-
85048391632
-
Unsupervised learning by predicting noise
-
P. Bojanowski and A. Joulin. Unsupervised learning by predicting noise. In ICML, 2017.
-
(2017)
ICML
-
-
Bojanowski, P.1
Joulin, A.2
-
4
-
-
84873601916
-
Multi-column deep neural networks for image classification
-
D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In CoRR, 2012.
-
(2012)
CoRR
-
-
Cireşan, D.1
Meier, U.2
Schmidhuber, J.3
-
5
-
-
84908466008
-
High-performance neural networks for visual object classification
-
D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. High-performance neural networks for visual object classification. In CoRR, 2011.
-
(2011)
CoRR
-
-
Cireşan, D.C.1
Meier, U.2
Masci, J.3
Gambardella, L.M.4
Schmidhuber, J.5
-
6
-
-
85062863313
-
Four keys to identifying birds
-
Four keys to identifying birds. Cornell Lab of Ornithology: Bird Scope, 23 (2), 2009.
-
(2009)
Cornell Lab of Ornithology: Bird Scope
, vol.23
, Issue.2
-
-
-
7
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
9
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
10
-
-
85041893548
-
Multi-task self-supervised visual learning
-
C. Doersch and A. Zisserman. Multi-task self-supervised visual learning. In ICCV, 2017.
-
(2017)
ICCV
-
-
Doersch, C.1
Zisserman, A.2
-
12
-
-
84981328865
-
Discriminative unsupervised feature learning with exemplar convolutional neural networks
-
A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38 (9): 1734-1747, 2015.
-
(2015)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.38
, Issue.9
, pp. 1734-1747
-
-
Dosovitskiy, A.1
Fischer, P.2
Springenberg, J.T.3
Riedmiller, M.4
Brox, T.5
-
13
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
June
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88 (2): 303-338, June 2010.
-
(2010)
International Journal of Computer Vision
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
14
-
-
85029359197
-
Fast r-cnn
-
R. Girshick. Fast r-cnn. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
15
-
-
85044262532
-
Self-supervised learning of visual features through embedding images into text topic spaces
-
L. Gomez, Y. Patel, M. Rusiñol, D. Karatzas, and C. V. Jawahar. Self-supervised learning of visual features through embedding images into text topic spaces. In CVPR, 2017.
-
(2017)
CVPR
-
-
Gomez, L.1
Patel, Y.2
Rusiñol, M.3
Karatzas, D.4
Jawahar, C.V.5
-
18
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
19
-
-
84973897623
-
Learning image representation tied to ego-motion
-
D. Jayaraman and K. Grauman. Learning image representation tied to ego-motion. In ICCV, 2015.
-
(2015)
ICCV
-
-
Jayaraman, D.1
Grauman, K.2
-
20
-
-
84913555165
-
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. ArXiv preprint arXiv: 1408. 5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
21
-
-
85050925867
-
Learning image representation by completing damaged jigsaw puzzles
-
D. Kim, D. Cho, D. Yoo, and I. S. Kweon. Learning image representation by completing damaged jigsaw puzzles. In WACV, 2018.
-
(2018)
WACV
-
-
Kim, D.1
Cho, D.2
Yoo, D.3
Kweon, I.S.4
-
22
-
-
85083952350
-
Datadependent initializations of convolutional neural networks
-
P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Datadependent initializations of convolutional neural networks. In ICLR, 2016.
-
(2016)
ICLR
-
-
Krähenbühl, P.1
Doersch, C.2
Donahue, J.3
Darrell, T.4
-
23
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2013.
-
(2013)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
85041897195
-
Colorization as a proxy task for visual understanding
-
G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a proxy task for visual understanding. In CVPR, 2017.
-
(2017)
CVPR
-
-
Larsson, G.1
Maire, M.2
Shakhnarovich, G.3
-
25
-
-
85041918226
-
Unsupervised representation learning by sorting sequences
-
H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang. Unsupervised representation learning by sorting sequences. In ICCV, 2017.
-
(2017)
ICCV
-
-
Lee, H.-Y.1
Huang, J.-B.2
Singh, M.3
Yang, M.-H.4
-
26
-
-
85056371038
-
Unsupervised visual representation learning by graph-based consistent constraints supplementary material
-
D. Li, W.-C. Hung, J.-B. Huang, S. Wang, N. Ahuja, and M.-H. Yang. Unsupervised visual representation learning by graph-based consistent constraints supplementary material. In ECCV, 2016.
-
(2016)
ECCV
-
-
Li, D.1
Hung, W.-C.2
Huang, J.-B.3
Wang, S.4
Ahuja, N.5
Yang, M.-H.6
-
28
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
29
-
-
84990049823
-
Shuffle and learn: Unsupervised learning using temporal order verification
-
I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: Unsupervised learning using temporal order verification. In ECCV, 2016.
-
(2016)
ECCV
-
-
Misra, I.1
Zitnick, C.L.2
Hebert, M.3
-
30
-
-
85041915299
-
A large contextual dataset for classification, detection and counting of cars with deep learning
-
T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye. A large contextual dataset for classification, detection and counting of cars with deep learning. In ECCV, 2016.
-
(2016)
ECCV
-
-
Mundhenk, T.N.1
Konjevod, G.2
Sakla, W.A.3
Boakye, K.4
-
31
-
-
84986287885
-
Unsupervised learning of visual representations by solving jigsaw puzzles
-
M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV, 2016.
-
(2016)
ECCV
-
-
Noroozi, M.1
Favaro, P.2
-
33
-
-
85041930018
-
Representation learning by learning to count
-
M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by learning to count. In ICCV, 2017.
-
(2017)
ICCV
-
-
Noroozi, M.1
Pirsiavash, H.2
Favaro, P.3
-
34
-
-
84990069019
-
Ambient sound provides supervision for visuallearning
-
A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba. Ambient sound provides supervision for visuallearning. In ECCV, 2016.
-
(2016)
ECCV
-
-
Owens, A.1
Wu, J.2
McDermott, J.H.3
Freeman, W.T.4
Torralba, A.5
-
35
-
-
85041908735
-
Learning features by watching objects move
-
D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariharan. Learning features by watching objects move. In CVPR, 2017.
-
(2017)
CVPR
-
-
Pathak, D.1
Girshick, R.2
Dollár, P.3
Darrell, T.4
Hariharan, B.5
-
36
-
-
84986294165
-
Context encoders: Feature learning by inpainting
-
D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016.
-
(2016)
CVPR
-
-
Pathak, D.1
Krähenbühl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.5
-
38
-
-
84933585162
-
Very deep convolutional networks for large-scaleimage recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scaleimage recognition. In CoRR, 2014.
-
(2014)
CoRR
-
-
Simonyan, K.1
Zisserman, A.2
-
40
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
41
-
-
0018963696
-
Margaret thatcher: A new illusion
-
P. Thompson. Margaret thatcher: A new illusion. Perception, 9 (4): 483-484, 1980.
-
(1980)
Perception
, vol.9
, Issue.4
, pp. 483-484
-
-
Thompson, P.1
-
43
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
44
-
-
85041911015
-
Transitive invariance for selfsupervised visual representation learning
-
X. Wang, K. He, and A. Gupta. Transitive invariance for selfsupervised visual representation learning. In ICCV, 2017.
-
(2017)
ICCV
-
-
Wang, X.1
He, K.2
Gupta, A.3
-
45
-
-
80052891795
-
-
Technical Report CNS-TR-2010-001, California Institute of Technology
-
P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.
-
(2010)
Caltech-UCSD Birds 200
-
-
Welinder, P.1
Branson, S.2
Mita, T.3
Wah, C.4
Schroff, F.5
Belongie, S.6
Perona, P.7
-
46
-
-
84959184327
-
A large-scale car dataset for fine-grained categorization and verification
-
L. Yang, P. Luo, C. C. Loy, and X. Tang. A large-scale car dataset for fine-grained categorization and verification. In CVPR, 2015.
-
(2015)
CVPR
-
-
Yang, L.1
Luo, P.2
Loy, C.C.3
Tang, X.4
-
48
-
-
85044323260
-
Split-brain autoencoders: Unsupervised learning by cross-channel prediction
-
R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In CVPR, 2017.
-
(2017)
CVPR
-
-
Zhang, R.1
Isola, P.2
Efros, A.A.3
-
49
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
-
(2014)
NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|