-
1
-
-
84866657764
-
SLIC superpixels compared to state-of-the-art superpixel methods
-
5
-
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI, 2012. 5
-
(2012)
TPAMI
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Süsstrunk, S.6
-
2
-
-
84973926501
-
Learning to see by moving
-
3, 6, 7
-
P. Agrawal, J. Carreira, and J. Malik. Learning to see by moving. ICCV, 2015. 3, 6, 7
-
(2015)
ICCV
-
-
Agrawal, P.1
Carreira, J.2
Malik, J.3
-
5
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. TPAMI, 35(8), 2013. 2
-
(2013)
TPAMI
, vol.35
, Issue.8
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
6
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
5
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. CVPR, 2005. 5
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
7
-
-
0005986550
-
Learning classification with unlabeled data
-
2
-
V. R. de Sa. Learning classification with unlabeled data. NIPS, 1994. 2
-
(1994)
NIPS
-
-
De Sa, V.R.1
-
8
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
1, 2, 3, 4, 6, 7, 8
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. ICCV, 2015. 1, 2, 3, 4, 6, 7, 8
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
9
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
1
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML, 2014. 1
-
(2014)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
10
-
-
85072112813
-
Adversarial feature learning
-
2, 6, 7, 8
-
J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial Feature Learning. ICLR, 2017. 2, 6, 7, 8
-
(2017)
ICLR
-
-
Donahue, J.1
Krähenbühl, P.2
Darrell, T.3
-
11
-
-
85041900982
-
Adversarially learned inference
-
2
-
V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and A. Courville. Adversarially learned inference. ICLR, 2017. 2
-
(2017)
ICLR
-
-
Dumoulin, V.1
Belghazi, I.2
Poole, B.3
Lamb, A.4
Arjovsky, M.5
Mastropietro, O.6
Courville, A.7
-
12
-
-
84919724784
-
Video segmentation by non-local consensus voting
-
5
-
A. Faktor and M. Irani. Video Segmentation by Non-Local Consensus voting. BMVC, 2014. 5
-
(2014)
BMVC
-
-
Faktor, A.1
Irani, M.2
-
13
-
-
84898817849
-
A unified video segmentation benchmark: Annotation, metrics and analysis
-
6
-
F. Galasso, N. Nagaraja, T. Cardenas, T. Brox, and B. Schiele. A unified video segmentation benchmark: Annotation, metrics and analysis. ICCV, 2013. 6
-
(2013)
ICCV
-
-
Galasso, F.1
Nagaraja, N.2
Cardenas, T.3
Brox, T.4
Schiele, B.5
-
14
-
-
85028031069
-
Unsupervised cnn for single view depth estimation: Geometry to the rescue
-
3
-
R. Garg, V. K. B.G., G. Carneiro, and I. Reid. Unsupervised cnn for single view depth estimation: Geometry to the rescue. ECCV, 2016. 3
-
(2016)
ECCV
-
-
Garg, R.1
Carneiro, V.K.B.G.G.2
Reid, I.3
-
16
-
-
84937849144
-
Generative adversarial nets
-
2
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. NIPS, 2014. 2
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
17
-
-
84965139813
-
Learning to lin-earize under uncertainty
-
R. Goroshin, M. Mathieu, and Y. LeCun. Learning to lin-earize under uncertainty. NIPS, 2015. 1, 3
-
(2015)
NIPS
-
-
Goroshin, R.1
Mathieu, M.2
LeCun, Y.3
-
18
-
-
84856686500
-
Semantic contours from inverse detectors
-
8
-
B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. ICCV, 2011. 8
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
19
-
-
84959236250
-
Hyper-columns for object segmentation and fine-grained localization
-
1
-
B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-columns for object segmentation and fine-grained localization. CVPR, 2015. 1
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
20
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006. 1, 2
-
(2006)
Science
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
21
-
-
84973897623
-
Learning image representations tied to ego-motion
-
3
-
D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. ICCV, 2015. 3
-
(2015)
ICCV
-
-
Jayaraman, D.1
Grauman, K.2
-
22
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
6
-
P. Kohli, P. H. Torr, et al. Robust higher order potentials for enforcing label consistency. IJCV, 2009. 6
-
(2009)
IJCV
-
-
Kohli, P.1
Torr, P.H.2
-
23
-
-
85083952350
-
Data-dependent initializations of convolutional neural networks
-
7
-
P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-dependent initializations of convolutional neural networks. ICLR, 2016. 7
-
(2016)
ICLR
-
-
Krähenbühl, P.1
Doersch, C.2
Donahue, J.3
Darrell, T.4
-
24
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
3
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. NIPS, 2012. 3
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
25
-
-
85030792287
-
Learning representations for automatic colorization
-
2
-
G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. ECCV, 2016. 2
-
(2016)
ECCV
-
-
Larsson, G.1
Maire, M.2
Shakhnarovich, G.3
-
27
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in context. ECCV, 2014. 2, 3
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ra-Manan, D.6
Dollár, P.7
Zitnick, C.L.8
-
28
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
8
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CVPR, 2015. 8
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
29
-
-
84990049823
-
Shuffle and learn: Unsupervised learning using temporal order verificationXS
-
1, 3
-
I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. ECCV, 2016. 1, 3
-
(2016)
ECCV
-
-
Misra, I.1
Zitnick, C.L.2
Hebert, M.3
-
30
-
-
84986287885
-
Unsupervised learning of visual representations by solving jigsaw puzzles
-
1, 2, 3, 6, 7
-
M. Noroozi and P. Favaro. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. ECCV, 2016. 1, 2, 3, 6, 7
-
(2016)
ECCV
-
-
Noroozi, M.1
Favaro, P.2
-
31
-
-
84901822916
-
Segmentation of moving objects by long term video analysis
-
P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video analysis. TPAMI, 36(6), 2014. 6
-
(2014)
TPAMI
, vol.36
, Issue.6
-
-
Ochs, P.1
Malik, J.2
Brox, T.3
-
32
-
-
74549174620
-
Visual parsing after recovery from blindness
-
1
-
Y. Ostrovsky, E. Meyers, S. Ganesh, U. Mathur, and P. Sinha. Visual parsing after recovery from blindness. Psychological Science, 2009. 1
-
(2009)
Psychological Science
-
-
Ostrovsky, Y.1
Meyers, E.2
Ganesh, S.3
Mathur, U.4
Sinha, P.5
-
33
-
-
84990069019
-
Ambient sound provides supervision for visual learning
-
2, 6, 7
-
A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba. Ambient sound provides supervision for visual learning. ECCV, 2016. 2, 6, 7
-
(2016)
ECCV
-
-
Owens, A.1
Wu, J.2
McDermott, J.H.3
Freeman, W.T.4
Torralba, A.5
-
35
-
-
84986294165
-
Context encoders: Feature learning by inpainting
-
2, 6, 7
-
D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros. Context Encoders: Feature Learning by Inpainting. CVPR, 2016. 2, 6, 7
-
(2016)
CVPR
-
-
Pathak, D.1
Krähenbühl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.5
-
36
-
-
84986253571
-
A benchmark dataset and evaluation methodology for video object segmentation
-
6
-
F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and A. Sorkine-Hornung. A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation. CVPR, 2016. 6
-
(2016)
CVPR
-
-
Perazzi, F.1
Pont-Tuset, J.2
McWilliams, B.3
Gool, L.V.4
Gross, M.5
Sorkine-Hornung, A.6
-
39
-
-
84898820142
-
Structured forests for fast edge detection
-
5
-
L. Z. Piotr Dollár. Structured forests for fast edge detection. ICCV, 2013. 5
-
(2013)
ICCV
-
-
Piotr Dollár, L.Z.1
-
41
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
1
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015. 1
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
42
-
-
0002856681
-
Principles of object perception
-
E. S. Spelke. Principles of object perception. Cognitive science, 14(1), 1990. 1
-
(1990)
Cognitive Science
, vol.14
, Issue.1
-
-
Spelke, E.S.1
-
43
-
-
84957922397
-
YFCC100M: The new data in multimedia research
-
), 2, 5
-
B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. YFCC100M: The new data in multimedia research. Communications of the ACM, 59(2), 2016. 2, 5
-
(2016)
Communications of The ACM
, vol.59
, Issue.2
-
-
Thomee, B.1
Shamma, D.A.2
Friedland, G.3
Elizalde, B.4
Ni, K.5
Poland, D.6
Borth, D.7
Li, L.-J.8
-
44
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. ICML, 2008. 1, 2
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
45
-
-
85018884809
-
An uncertain future: Forecasting from static images using variational autoencoders
-
3
-
J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static images using variational autoencoders. ECCV, 2016. 3
-
(2016)
ECCV
-
-
Walker, J.1
Doersch, C.2
Gupta, A.3
Hebert, M.4
-
46
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
1, 2, 6, 7, 8
-
X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. ICCV, 2015. 1, 2, 6, 7, 8
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
48
-
-
84856672971
-
Human action recognition by learning bases of action attributes and parts
-
8
-
B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human action recognition by learning bases of action attributes and parts. ICCV, 2011. 8
-
(2011)
ICCV
-
-
Yao, B.1
Jiang, X.2
Khosla, A.3
Lin, A.L.4
Guibas, L.5
Fei-Fei, L.6
-
49
-
-
84937508363
-
How transferable are features in deep neural networks?
-
4
-
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? NIPS, 2014. 4
-
(2014)
NIPS
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
51
-
-
84990021580
-
Colorful image colorization
-
2, 6, 7, 8
-
R. Zhang, P. Isola, and A. A. Efros. Colorful Image Colorization. ECCV, 2016. 2, 6, 7, 8
-
(2016)
ECCV
-
-
Zhang, R.1
Isola, P.2
Efros, A.A.3
-
52
-
-
85044323260
-
Split-brain autoencoders: Unsupervised learning by cross-channel prediction
-
R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. CVPR, 2017. 2, 7
-
(2017)
CVPR
-
-
Zhang, R.1
Isola, P.2
Efros, A.A.3
|