-
1
-
-
85007158864
-
-
arXiv preprint arXiv:1609.08675
-
S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m: A large-scale video classification benchmark. ArXiv preprint arXiv:1609.08675, 2016
-
(2016)
Youtube-8m: A Large-scale Video Classification Benchmark
-
-
Abu-El-Haija, S.1
Kothari, N.2
Lee, J.3
Natsev, P.4
Toderici, G.5
Varadarajan, B.6
Vijayanarasimhan, S.7
-
5
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
6
-
-
84898936638
-
Mid-level visual element discovery as discriminative mode seeking
-
C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013
-
(2013)
NIPS
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
7
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
8
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88(2):303-338, 2010
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
9
-
-
85041924012
-
Selfsupervised video representation learning with odd-one-out networks
-
B. Fernando, H. Bilen, E. Gavves, and S. Gould. Selfsupervised video representation learning with odd-one-out networks. In CVPR, 2017
-
(2017)
CVPR
-
-
Fernando, B.1
Bilen, H.2
Gavves, E.3
Gould, S.4
-
10
-
-
85029359197
-
Fast r-cnn
-
R. Girshick. Fast r-cnn. In ICCV, 2015
-
(2015)
ICCV
-
-
Girshick, R.1
-
11
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
12
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
13
-
-
84990069535
-
Learning visual groups from co-occurrences in space and time
-
P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. Learning visual groups from co-occurrences in space and time. In ICLR, Workshop, 2016
-
(2016)
ICLR, Workshop
-
-
Isola, P.1
Zoran, D.2
Krishnan, D.3
Adelson, E.H.4
-
14
-
-
84973897623
-
Learning image representations tied to ego-motion
-
D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In ICCV, 2015
-
(2015)
ICCV
-
-
Jayaraman, D.1
Grauman, K.2
-
15
-
-
84986272538
-
Slow and steady feature analysis: Higher order temporal coherence in video
-
D. Jayaraman and K. Grauman. Slow and steady feature analysis: Higher order temporal coherence in video. In CVPR, 2016
-
(2016)
CVPR
-
-
Jayaraman, D.1
Grauman, K.2
-
16
-
-
85009867858
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM MM, 2014
-
(2014)
ACM MM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
84856682691
-
Hmdb: A large video database for human motion recognition
-
H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: A large video database for human motion recognition. In ICCV, 2011
-
(2011)
ICCV
-
-
Kuehne, H.1
Jhuang, H.2
Garrote, E.3
Poggio, T.4
Serre, T.5
-
20
-
-
85030792287
-
Learning representations for automatic colorization
-
G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. In ECCV, 2016
-
(2016)
ECCV
-
-
Larsson, G.1
Maire, M.2
Shakhnarovich, G.3
-
21
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. V. Le. Building high-level features using large scale unsupervised learning. In ICML, 2012
-
(2012)
ICML
-
-
Le, Q.V.1
-
22
-
-
85056371038
-
Unsupervised visual representation learning by graph-based consistent constraints
-
D. Li, W.-C. Hung, J.-B. Huang, S. Wang, N. Ahuja, and M.-H. Yang. Unsupervised visual representation learning by graph-based consistent constraints. In ECCV, 2016
-
(2016)
ECCV
-
-
Li, D.1
Hung, W.-C.2
Huang, J.-B.3
Wang, S.4
Ahuja, N.5
Yang, M.-H.6
-
23
-
-
85041901887
-
Learning image matching by simply watching video
-
G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu. Learning image matching by simply watching video. In ECCV, 2016
-
(2016)
ECCV
-
-
Long, G.1
Kneip, L.2
Alvarez, J.M.3
Li, H.4
Zhang, X.5
Yu, Q.6
-
24
-
-
85088229806
-
Deep predictive coding networks for video prediction and unsupervised learning
-
W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks for video prediction and unsupervised learning. In ICLR, 2017
-
(2017)
ICLR
-
-
Lotter, W.1
Kreiman, G.2
Cox, D.3
-
25
-
-
84990049823
-
Shuffle and learn: Unsupervised learning using temporal order verification
-
I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: Unsupervised learning using temporal order verification. In ECCV, 2016
-
(2016)
ECCV
-
-
Misra, I.1
Zitnick, C.L.2
Hebert, M.3
-
26
-
-
71149084945
-
Deep learning from temporal coherence in video
-
H. Mobahi, R. Collobert, and J.Weston. Deep learning from temporal coherence in video. In ICML, 2009
-
(2009)
ICML
-
-
Mobahi, H.1
Collobert, R.2
Weston, J.3
-
27
-
-
84986287885
-
Unsupervised learning of visual representations by solving jigsaw puzzles
-
M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV, 2016
-
(2016)
ECCV
-
-
Noroozi, M.1
Favaro, P.2
-
28
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by v1
-
B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1 Vision research, 37(23):3311-3325, 1997
-
(1997)
Vision Research
, vol.37
, Issue.23
, pp. 3311-3325
-
-
Olshausen, B.A.1
Field, D.J.2
-
29
-
-
84990069019
-
Ambient sound provides supervision for visual learning
-
A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba. Ambient sound provides supervision for visual learning. In ECCV, 2016
-
(2016)
ECCV
-
-
Owens, A.1
Wu, J.2
McDermott, J.H.3
Freeman, W.T.4
Torralba, A.5
-
30
-
-
84986294165
-
Context encoders: Feature learning by inpainting
-
D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016
-
(2016)
CVPR
-
-
Pathak, D.1
Krähenbühl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.A.5
-
31
-
-
85041896588
-
Pose from action: Unsupervised learning of pose features based on motion
-
S. Purushwalkam and A. Gupta. Pose from action: Unsupervised learning of pose features based on motion. In ECCV, Workshop, 2016
-
(2016)
ECCV, Workshop
-
-
Purushwalkam, S.1
Gupta, A.2
-
32
-
-
51949106645
-
Selftaught learning: Transfer learning from unlabeled data
-
R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Selftaught learning: Transfer learning from unlabeled data. In ICML, 2007
-
(2007)
ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
33
-
-
33845596932
-
Using multiple segmentations to discover objects and their extent in image collections
-
B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006
-
(2006)
CVPR
-
-
Russell, B.C.1
Freeman, W.T.2
Efros, A.A.3
Sivic, J.4
Zisserman, A.5
-
35
-
-
84884958786
-
Unsupervised discovery of mid-level discriminative patches
-
S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012
-
(2012)
ECCV
-
-
Singh, S.1
Gupta, A.2
Efros, A.A.3
-
36
-
-
33745938597
-
Discovering objects and their location in images
-
J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discovering objects and their location in images. In ICCV, 2005
-
(2005)
ICCV
-
-
Sivic, J.1
Russell, B.C.2
Efros, A.A.3
Zisserman, A.4
Freeman, W.T.5
-
38
-
-
84969544782
-
Unsupervised learning of video representations using lstms
-
N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using lstms. In ICML, 2015
-
(2015)
ICML
-
-
Srivastava, N.1
Mansimov, E.2
Salakhutdinov, R.3
-
39
-
-
84898806407
-
Learning discriminative part detectors for image classification and cosegmentation
-
J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013
-
(2013)
ICCV
-
-
Sun, J.1
Ponce, J.2
-
42
-
-
84965180823
-
Unsupervised learning of visual representations using videos
-
X.Wang and A. Gupta. Unsupervised learning of visual representations using videos. In CVPR, 2015
-
(2015)
CVPR
-
-
Wang, X.1
Gupta, A.2
-
44
-
-
85044323260
-
Split-brain autoencoders: Unsupervised learning by cross-channel prediction
-
R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In CVPR, 2017.
-
(2017)
CVPR
-
-
Zhang, R.1
Isola, P.2
Efros, A.A.3
|