메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 667-676

Unsupervised Representation Learning by Sorting Sequences

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE PROCESSING; NEURAL NETWORKS; OBJECT DETECTION; SEMANTICS;

EID: 85041918226     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.79     Document Type: Conference Paper
Times cited : (678)

References (44)
  • 6
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 7
    • 84973916088 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015
    • (2015) ICCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 9
    • 85041924012 scopus 로고    scopus 로고
    • Selfsupervised video representation learning with odd-one-out networks
    • B. Fernando, H. Bilen, E. Gavves, and S. Gould. Selfsupervised video representation learning with odd-one-out networks. In CVPR, 2017
    • (2017) CVPR
    • Fernando, B.1    Bilen, H.2    Gavves, E.3    Gould, S.4
  • 10
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • R. Girshick. Fast r-cnn. In ICCV, 2015
    • (2015) ICCV
    • Girshick, R.1
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 12
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 14
    • 84973897623 scopus 로고    scopus 로고
    • Learning image representations tied to ego-motion
    • D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In ICCV, 2015
    • (2015) ICCV
    • Jayaraman, D.1    Grauman, K.2
  • 15
    • 84986272538 scopus 로고    scopus 로고
    • Slow and steady feature analysis: Higher order temporal coherence in video
    • D. Jayaraman and K. Grauman. Slow and steady feature analysis: Higher order temporal coherence in video. In CVPR, 2016
    • (2016) CVPR
    • Jayaraman, D.1    Grauman, K.2
  • 17
    • 85019200240 scopus 로고    scopus 로고
    • Datadependent initializations of convolutional neural networks
    • P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Datadependent initializations of convolutional neural networks. In ICLR, 2015
    • (2015) ICLR
    • Krähenbühl, P.1    Doersch, C.2    Donahue, J.3    Darrell, T.4
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 85030792287 scopus 로고    scopus 로고
    • Learning representations for automatic colorization
    • G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. In ECCV, 2016
    • (2016) ECCV
    • Larsson, G.1    Maire, M.2    Shakhnarovich, G.3
  • 21
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Q. V. Le. Building high-level features using large scale unsupervised learning. In ICML, 2012
    • (2012) ICML
    • Le, Q.V.1
  • 22
    • 85056371038 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by graph-based consistent constraints
    • D. Li, W.-C. Hung, J.-B. Huang, S. Wang, N. Ahuja, and M.-H. Yang. Unsupervised visual representation learning by graph-based consistent constraints. In ECCV, 2016
    • (2016) ECCV
    • Li, D.1    Hung, W.-C.2    Huang, J.-B.3    Wang, S.4    Ahuja, N.5    Yang, M.-H.6
  • 24
    • 85088229806 scopus 로고    scopus 로고
    • Deep predictive coding networks for video prediction and unsupervised learning
    • W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks for video prediction and unsupervised learning. In ICLR, 2017
    • (2017) ICLR
    • Lotter, W.1    Kreiman, G.2    Cox, D.3
  • 25
    • 84990049823 scopus 로고    scopus 로고
    • Shuffle and learn: Unsupervised learning using temporal order verification
    • I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: Unsupervised learning using temporal order verification. In ECCV, 2016
    • (2016) ECCV
    • Misra, I.1    Zitnick, C.L.2    Hebert, M.3
  • 26
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • H. Mobahi, R. Collobert, and J.Weston. Deep learning from temporal coherence in video. In ICML, 2009
    • (2009) ICML
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 27
    • 84986287885 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations by solving jigsaw puzzles
    • M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV, 2016
    • (2016) ECCV
    • Noroozi, M.1    Favaro, P.2
  • 28
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1 Vision research, 37(23):3311-3325, 1997
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 31
    • 85041896588 scopus 로고    scopus 로고
    • Pose from action: Unsupervised learning of pose features based on motion
    • S. Purushwalkam and A. Gupta. Pose from action: Unsupervised learning of pose features based on motion. In ECCV, Workshop, 2016
    • (2016) ECCV, Workshop
    • Purushwalkam, S.1    Gupta, A.2
  • 32
    • 51949106645 scopus 로고    scopus 로고
    • Selftaught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Selftaught learning: Transfer learning from unlabeled data. In ICML, 2007
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 33
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006
    • (2006) CVPR
    • Russell, B.C.1    Freeman, W.T.2    Efros, A.A.3    Sivic, J.4    Zisserman, A.5
  • 35
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.A.3
  • 38
    • 84969544782 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using lstms
    • N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using lstms. In ICML, 2015
    • (2015) ICML
    • Srivastava, N.1    Mansimov, E.2    Salakhutdinov, R.3
  • 39
    • 84898806407 scopus 로고    scopus 로고
    • Learning discriminative part detectors for image classification and cosegmentation
    • J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013
    • (2013) ICCV
    • Sun, J.1    Ponce, J.2
  • 42
    • 84965180823 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X.Wang and A. Gupta. Unsupervised learning of visual representations using videos. In CVPR, 2015
    • (2015) CVPR
    • Wang, X.1    Gupta, A.2
  • 44
    • 85044323260 scopus 로고    scopus 로고
    • Split-brain autoencoders: Unsupervised learning by cross-channel prediction
    • R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In CVPR, 2017.
    • (2017) CVPR
    • Zhang, R.1    Isola, P.2    Efros, A.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.