메뉴 건너뛰기




Volumn , Issue , 2017, Pages 422-432

Piecewise latent variables for neural variational text processing

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; MODELING LANGUAGES; TEXT PROCESSING;

EID: 85060475117     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d17-1043     Document Type: Conference Paper
Times cited : (29)

References (57)
  • 3
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent dirichlet allocation. JAIR, 3:993–1022.
    • (2003) JAIR , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 10
    • 0030297038 scopus 로고    scopus 로고
    • Varieties of helmholtz machine
    • P. Dayan and G. E. Hinton. 1996. Varieties of helmholtz machine. Neural Networks, 9(8):1385–1403.
    • (1996) Neural Networks , vol.9 , Issue.8 , pp. 1385-1403
    • Dayan, P.1    Hinton, G.E.2
  • 13
    • 85019203505 scopus 로고    scopus 로고
    • Sequential neural models with stochastic layers
    • M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther. 2016. Sequential neural models with stochastic layers. In NIPS, pages 2199–2207.
    • (2016) NIPS , pp. 2199-2207
    • Fraccaro, M.1    Sønderby, S.K.2    Paquet, U.3    Winther, O.4
  • 14
    • 85030470748 scopus 로고    scopus 로고
    • Draw: A recurrent neural network for image generation
    • K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. 2015. DRAW: A recurrent neural network for image generation. In ICLR.
    • (2015) ICLR
    • Gregor, K.1    Danihelka, I.2    Graves, A.3    Wierstra, D.4
  • 15
    • 0029652445 scopus 로고
    • The "wake-sleep” algorithm for unsupervised neural networks
    • G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. 1995. The "wake-sleep” algorithm for unsupervised neural networks. Science, 268(5214):1158–1161.
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 16
    • 77956556686 scopus 로고    scopus 로고
    • Replicated softmax: An undirected topic model
    • G. E. Hinton and R. Salakhutdinov. 2009. Replicated softmax: an undirected topic model. In NIPS, pages 1607–1614.
    • (2009) NIPS , pp. 1607-1614
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 17
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and helmholtz free energy
    • NIPS
    • G. E. Hinton and R. S. Zemel. 1994. Autoencoders, minimum description length and helmholtz free energy. In NIPS, pages 3–10. NIPS.
    • (1994) NIPS , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 19
    • 85088225686 scopus 로고    scopus 로고
    • Categorical reparameterization with gumbel-softmax
    • E. Jang, S. Gu, and B. Poole. 2017. Categorical reparameterization with gumbel-softmax. In ICLR.
    • (2017) ICLR
    • Jang, E.1    Gu, S.2    Poole, B.3
  • 20
    • 85017433100 scopus 로고    scopus 로고
    • Composing graphical models with neural networks for structured representations and fast inference
    • M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. 2016. Composing graphical models with neural networks for structured representations and fast inference. In NIPS, pages 2946–2954.
    • (2016) NIPS , pp. 2946-2954
    • Johnson, M.1    Duvenaud, D.K.2    Wiltschko, A.3    Adams, R.P.4    Datta, S.R.5
  • 21
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. 1999. An introduction to variational methods for graphical models. Machine Learning, 37(2):183–233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 22
    • 85049298730 scopus 로고    scopus 로고
    • Smart reply: Automated response suggestion for email
    • A. Kannan, K. Kurach, et al. 2016. Smart Reply: Automated Response Suggestion for Email. In KDD.
    • (2016) KDD
    • Kannan, A.1    Kurach, K.2
  • 24
    • 85018866833 scopus 로고    scopus 로고
    • Improving variational inference with inverse autoregressive flow
    • D. P. Kingma, T. Salimans, and M. Welling. 2016. Improving variational inference with inverse autoregressive flow. NIPS, pages 4736–4744.
    • (2016) NIPS , pp. 4736-4744
    • Kingma, D.P.1    Salimans, T.2    Welling, M.3
  • 25
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. 2014. Auto-encoding variational Bayes. ICLR.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 26
    • 84877761544 scopus 로고    scopus 로고
    • A neural autoregressive topic model
    • H. Larochelle and S. Lauly. 2012. A neural autoregressive topic model. In NIPS, pages 2708–2716.
    • (2012) NIPS , pp. 2708-2716
    • Larochelle, H.1    Lauly, S.2
  • 27
    • 84990062230 scopus 로고    scopus 로고
    • Autoencoding beyond pixels using a learned similarity metric
    • A. B. Lindbo Larsen, S. K. Sønderby, and O. Winther. 2016. Autoencoding beyond pixels using a learned similarity metric. In ICML, pages 1558–1566.
    • (2016) ICML , pp. 1558-1566
    • Lindbo Larsen, A.B.1    Sønderby, S.K.2    Winther, O.3
  • 33
    • 85088232510 scopus 로고    scopus 로고
    • The concrete distribution: A continuous relaxation of discrete random variables
    • C. J. Maddison, A. Mnih, and Y. W. Teh. 2017. The concrete distribution: A continuous relaxation of discrete random variables. In ICLR.
    • (2017) ICLR
    • Maddison, C.J.1    Mnih, A.2    Teh, Y.W.3
  • 34
    • 85021954040 scopus 로고    scopus 로고
    • For sympathetic ear, more Chinese turn to smartphone program
    • J. Markoff and P. Mozur. 2015. For Sympathetic Ear, More Chinese Turn to Smartphone Program. New York Times.
    • (2015) New York Times
    • Markoff, J.1    Mozur, P.2
  • 35
    • 85039168844 scopus 로고    scopus 로고
    • Neural variational inference for text processing
    • Y. Miao, L. Yu, and P. Blunsom. 2016. Neural variational inference for text processing. In ICML, pages 1727–1736.
    • (2016) ICML , pp. 1727-1736
    • Miao, Y.1    Yu, L.2    Blunsom, P.3
  • 36
    • 84937852305 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • A. Mnih and K. Gregor. 2014. Neural variational inference and learning in belief networks. In ICML, pages 1791–1799.
    • (2014) ICML , pp. 1791-1799
    • Mnih, A.1    Gregor, K.2
  • 37
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • R. M. Neal. 1992. Connectionist learning of belief networks. Artificial intelligence, 56(1):71–113.
    • (1992) Artificial Intelligence , vol.56 , Issue.1 , pp. 71-113
    • Neal, R.M.1
  • 39
    • 84892982833 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • R. Pascanu, T. Mikolov, and Y. Bengio. 2012. On the difficulty of training recurrent neural networks. ICML, 28:1310–1318.
    • (2012) ICML , vol.28 , pp. 1310-1318
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 40
    • 85040760064 scopus 로고    scopus 로고
    • Hierarchical variational models
    • Rajesh Ranganath, Dustin Tran, and David Blei. 2016. Hierarchical variational models. In ICML, pages 324–333.
    • (2016) ICML , pp. 324-333
    • Ranganath, R.1    Tran, D.2    Blei, D.3
  • 41
    • 84969776493 scopus 로고    scopus 로고
    • Variational inference with normalizing flows
    • D. J. Rezende and S. Mohamed. 2015. Variational inference with normalizing flows. In ICML, pages 1530–1538.
    • (2015) ICML , pp. 1530-1538
    • Rezende, D.J.1    Mohamed, S.2
  • 42
    • 84919908080 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML, pages 1278–1286.
    • (2014) ICML , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 44
    • 85064803481 scopus 로고    scopus 로고
    • Discrete variational autoencoders
    • J. T. Rolfe. 2017. Discrete variational autoencoders. In ICLR.
    • (2017) ICLR
    • Rolfe, J.T.1
  • 45
    • 85016392055 scopus 로고    scopus 로고
    • The generalized reparameterization gradient
    • RC AUEB, and
    • Francisco R Ruiz, Michalis Titsias RC AUEB, and David Blei. 2016. The generalized reparameterization gradient. In NIPS, pages 460–468.
    • (2016) NIPS , pp. 460-468
    • Ruiz, F.R.1    Titsias, M.2    Blei, D.3
  • 47
    • 84862291504 scopus 로고    scopus 로고
    • Efficient learning of deep boltzmann machines
    • R. Salakhutdinov and H. Larochelle. 2010. Efficient learning of deep boltzmann machines. In AISTATs, pages 693–700.
    • (2010) AISTATs , pp. 693-700
    • Salakhutdinov, R.1    Larochelle, H.2
  • 48
    • 84969835291 scopus 로고    scopus 로고
    • Markov chain monte carlo and variational inference: Bridging the gap
    • T. Salimans, D. P Kingma, and M. Welling. 2015. Markov chain monte carlo and variational inference: Bridging the gap. In ICML, pages 1218–1226.
    • (2015) ICML , pp. 1218-1226
    • Salimans, T.1    Kingma, D.P.2    Welling, M.3
  • 56
    • 84992736695 scopus 로고    scopus 로고
    • A deep and tractable density estimator
    • B. Uria, I. Murray, and H. Larochelle. 2014. A deep and tractable density estimator. In ICML, pages 467–475.
    • (2014) ICML , pp. 467-475
    • Uria, B.1    Murray, I.2    Larochelle, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.