-
2
-
-
70350454879
-
Learning the structure of task-driven human–human dialogs
-
S. Bangalore, G. Di Fabbrizio, and A. Stent. 2008. Learning the structure of task-driven human–human dialogs. IEEE Transactions on Audio, Speech, and Language Processing, 16(7):1249–1259.
-
(2008)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.16
, Issue.7
, pp. 1249-1259
-
-
Bangalore, S.1
Di Fabbrizio, G.2
Stent, A.3
-
3
-
-
0141607824
-
Latent dirichlet allocation
-
D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent dirichlet allocation. JAIR, 3:993–1022.
-
(2003)
JAIR
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
5
-
-
84998888548
-
Generating sentences from a continuous space
-
S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. 2015. Generating sentences from a continuous space. In Conference on Computational Natural Language Learning.
-
(2015)
Conference on Computational Natural Language Learning
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Jozefowicz, R.5
Bengio, S.6
-
8
-
-
85088227408
-
Variational lossy autoencoder
-
X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and P. Abbeel. 2017. Variational lossy autoencoder. In ICLR.
-
(2017)
ICLR
-
-
Chen, X.1
Kingma, D.P.2
Salimans, T.3
Duan, Y.4
Dhariwal, P.5
Schulman, J.6
Sutskever, I.7
Abbeel, P.8
-
10
-
-
0030297038
-
Varieties of helmholtz machine
-
P. Dayan and G. E. Hinton. 1996. Varieties of helmholtz machine. Neural Networks, 9(8):1385–1403.
-
(1996)
Neural Networks
, vol.9
, Issue.8
, pp. 1385-1403
-
-
Dayan, P.1
Hinton, G.E.2
-
13
-
-
85019203505
-
Sequential neural models with stochastic layers
-
M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther. 2016. Sequential neural models with stochastic layers. In NIPS, pages 2199–2207.
-
(2016)
NIPS
, pp. 2199-2207
-
-
Fraccaro, M.1
Sønderby, S.K.2
Paquet, U.3
Winther, O.4
-
15
-
-
0029652445
-
The "wake-sleep” algorithm for unsupervised neural networks
-
G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. 1995. The "wake-sleep” algorithm for unsupervised neural networks. Science, 268(5214):1158–1161.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
16
-
-
77956556686
-
Replicated softmax: An undirected topic model
-
G. E. Hinton and R. Salakhutdinov. 2009. Replicated softmax: an undirected topic model. In NIPS, pages 1607–1614.
-
(2009)
NIPS
, pp. 1607-1614
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
17
-
-
0002834189
-
Autoencoders, minimum description length and helmholtz free energy
-
NIPS
-
G. E. Hinton and R. S. Zemel. 1994. Autoencoders, minimum description length and helmholtz free energy. In NIPS, pages 3–10. NIPS.
-
(1994)
NIPS
, pp. 3-10
-
-
Hinton, G.E.1
Zemel, R.S.2
-
19
-
-
85088225686
-
Categorical reparameterization with gumbel-softmax
-
E. Jang, S. Gu, and B. Poole. 2017. Categorical reparameterization with gumbel-softmax. In ICLR.
-
(2017)
ICLR
-
-
Jang, E.1
Gu, S.2
Poole, B.3
-
20
-
-
85017433100
-
Composing graphical models with neural networks for structured representations and fast inference
-
M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. 2016. Composing graphical models with neural networks for structured representations and fast inference. In NIPS, pages 2946–2954.
-
(2016)
NIPS
, pp. 2946-2954
-
-
Johnson, M.1
Duvenaud, D.K.2
Wiltschko, A.3
Adams, R.P.4
Datta, S.R.5
-
21
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. 1999. An introduction to variational methods for graphical models. Machine Learning, 37(2):183–233.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
22
-
-
85049298730
-
Smart reply: Automated response suggestion for email
-
A. Kannan, K. Kurach, et al. 2016. Smart Reply: Automated Response Suggestion for Email. In KDD.
-
(2016)
KDD
-
-
Kannan, A.1
Kurach, K.2
-
24
-
-
85018866833
-
Improving variational inference with inverse autoregressive flow
-
D. P. Kingma, T. Salimans, and M. Welling. 2016. Improving variational inference with inverse autoregressive flow. NIPS, pages 4736–4744.
-
(2016)
NIPS
, pp. 4736-4744
-
-
Kingma, D.P.1
Salimans, T.2
Welling, M.3
-
25
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. 2014. Auto-encoding variational Bayes. ICLR.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
26
-
-
84877761544
-
A neural autoregressive topic model
-
H. Larochelle and S. Lauly. 2012. A neural autoregressive topic model. In NIPS, pages 2708–2716.
-
(2012)
NIPS
, pp. 2708-2716
-
-
Larochelle, H.1
Lauly, S.2
-
27
-
-
84990062230
-
Autoencoding beyond pixels using a learned similarity metric
-
A. B. Lindbo Larsen, S. K. Sønderby, and O. Winther. 2016. Autoencoding beyond pixels using a learned similarity metric. In ICML, pages 1558–1566.
-
(2016)
ICML
, pp. 1558-1566
-
-
Lindbo Larsen, A.B.1
Sønderby, S.K.2
Winther, O.3
-
29
-
-
84994184277
-
A diversity-promoting objective function for neural conversation models
-
J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. 2016. A diversity-promoting objective function for neural conversation models. In The North American Chapter of the Association for Computational Linguistics (NAACL), pages 110–119.
-
(2016)
The North American Chapter of the Association for Computational Linguistics (NAACL)
, pp. 110-119
-
-
Li, J.1
Galley, M.2
Brockett, C.3
Gao, J.4
Dolan, B.5
-
31
-
-
85028330041
-
Training end-to-end dialogue systems with the ubuntu dialogue corpus
-
Ryan T. Lowe, Nissan Pow, Iulian V. Serban, Laurent Charlin, Chia-Wei Liu, and Joelle Pineau. 2017. Training End-to-End Dialogue Systems with the Ubuntu Dialogue Corpus. Dialogue & Discourse, 8(1).
-
(2017)
Dialogue & Discourse
, vol.8
, Issue.1
-
-
Lowe, R.T.1
Pow, N.2
Serban, I.V.3
Charlin, L.4
Liu, C.-W.5
Pineau, J.6
-
33
-
-
85088232510
-
The concrete distribution: A continuous relaxation of discrete random variables
-
C. J. Maddison, A. Mnih, and Y. W. Teh. 2017. The concrete distribution: A continuous relaxation of discrete random variables. In ICLR.
-
(2017)
ICLR
-
-
Maddison, C.J.1
Mnih, A.2
Teh, Y.W.3
-
34
-
-
85021954040
-
For sympathetic ear, more Chinese turn to smartphone program
-
J. Markoff and P. Mozur. 2015. For Sympathetic Ear, More Chinese Turn to Smartphone Program. New York Times.
-
(2015)
New York Times
-
-
Markoff, J.1
Mozur, P.2
-
35
-
-
85039168844
-
Neural variational inference for text processing
-
Y. Miao, L. Yu, and P. Blunsom. 2016. Neural variational inference for text processing. In ICML, pages 1727–1736.
-
(2016)
ICML
, pp. 1727-1736
-
-
Miao, Y.1
Yu, L.2
Blunsom, P.3
-
36
-
-
84937852305
-
Neural variational inference and learning in belief networks
-
A. Mnih and K. Gregor. 2014. Neural variational inference and learning in belief networks. In ICML, pages 1791–1799.
-
(2014)
ICML
, pp. 1791-1799
-
-
Mnih, A.1
Gregor, K.2
-
37
-
-
44049116681
-
Connectionist learning of belief networks
-
R. M. Neal. 1992. Connectionist learning of belief networks. Artificial intelligence, 56(1):71–113.
-
(1992)
Artificial Intelligence
, vol.56
, Issue.1
, pp. 71-113
-
-
Neal, R.M.1
-
39
-
-
84892982833
-
On the difficulty of training recurrent neural networks
-
R. Pascanu, T. Mikolov, and Y. Bengio. 2012. On the difficulty of training recurrent neural networks. ICML, 28:1310–1318.
-
(2012)
ICML
, vol.28
, pp. 1310-1318
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
40
-
-
85040760064
-
Hierarchical variational models
-
Rajesh Ranganath, Dustin Tran, and David Blei. 2016. Hierarchical variational models. In ICML, pages 324–333.
-
(2016)
ICML
, pp. 324-333
-
-
Ranganath, R.1
Tran, D.2
Blei, D.3
-
41
-
-
84969776493
-
Variational inference with normalizing flows
-
D. J. Rezende and S. Mohamed. 2015. Variational inference with normalizing flows. In ICML, pages 1530–1538.
-
(2015)
ICML
, pp. 1530-1538
-
-
Rezende, D.J.1
Mohamed, S.2
-
42
-
-
84919908080
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. J. Rezende, S. Mohamed, and D. Wierstra. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML, pages 1278–1286.
-
(2014)
ICML
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
44
-
-
85064803481
-
Discrete variational autoencoders
-
J. T. Rolfe. 2017. Discrete variational autoencoders. In ICLR.
-
(2017)
ICLR
-
-
Rolfe, J.T.1
-
45
-
-
85016392055
-
The generalized reparameterization gradient
-
RC AUEB, and
-
Francisco R Ruiz, Michalis Titsias RC AUEB, and David Blei. 2016. The generalized reparameterization gradient. In NIPS, pages 460–468.
-
(2016)
NIPS
, pp. 460-468
-
-
Ruiz, F.R.1
Titsias, M.2
Blei, D.3
-
47
-
-
84862291504
-
Efficient learning of deep boltzmann machines
-
R. Salakhutdinov and H. Larochelle. 2010. Efficient learning of deep boltzmann machines. In AISTATs, pages 693–700.
-
(2010)
AISTATs
, pp. 693-700
-
-
Salakhutdinov, R.1
Larochelle, H.2
-
48
-
-
84969835291
-
Markov chain monte carlo and variational inference: Bridging the gap
-
T. Salimans, D. P Kingma, and M. Welling. 2015. Markov chain monte carlo and variational inference: Bridging the gap. In ICML, pages 1218–1226.
-
(2015)
ICML
, pp. 1218-1226
-
-
Salimans, T.1
Kingma, D.P.2
Welling, M.3
-
50
-
-
85030459483
-
Multiresolution recurrent neural networks: An application to dialogue response generation
-
I. V. Serban, T. Klinger, G. Tesauro, K. Talamadupula, B. Zhou, Y. Bengio, and A. Courville. 2017a. Multiresolution recurrent neural networks: An application to dialogue response generation. In Thirty-First AAAI Conference (AAAI).
-
(2017)
Thirty-First AAAI Conference (AAAI)
-
-
Serban, I.V.1
Klinger, T.2
Tesauro, G.3
Talamadupula, K.4
Zhou, B.5
Bengio, Y.6
Courville, A.7
-
52
-
-
85021671951
-
A hierarchical latent variable encoder-decoder model for generating dialogues
-
I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y. Bengio. 2017b. A hierarchical latent variable encoder-decoder model for generating dialogues. In Thirty-First AAAI Conference (AAAI).
-
(2017)
Thirty-First AAAI Conference (AAAI)
-
-
Serban, I.V.1
Sordoni, A.2
Lowe, R.3
Charlin, L.4
Pineau, J.5
Courville, A.6
Bengio, Y.7
-
54
-
-
84960121226
-
A neural network approach to context-sensitive generation of conversational responses
-
A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J. Nie, J. Gao, and B. Dolan. 2015. A neural network approach to context-sensitive generation of conversational responses. In Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT 2015), pages 196–205.
-
(2015)
Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT 2015)
, pp. 196-205
-
-
Sordoni, A.1
Galley, M.2
Auli, M.3
Brockett, C.4
Ji, Y.5
Mitchell, M.6
Nie, J.7
Gao, J.8
Dolan, B.9
-
56
-
-
84992736695
-
A deep and tractable density estimator
-
B. Uria, I. Murray, and H. Larochelle. 2014. A deep and tractable density estimator. In ICML, pages 467–475.
-
(2014)
ICML
, pp. 467-475
-
-
Uria, B.1
Murray, I.2
Larochelle, H.3
|