메뉴 건너뛰기




Volumn 33, Issue 14, 2017, Pages i234-i242

TITER: Predicting translation initiation sites by deep learning

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; BIOLOGY; HUMAN; MACHINE LEARNING; MOUSE; OPEN READING FRAME; PROCEDURES; SOFTWARE; START CODON; TRANSLATION INITIATION;

EID: 85024488858     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx247     Document Type: Conference Paper
Times cited : (81)

References (53)
  • 1
    • 85037705797 scopus 로고    scopus 로고
    • The Ensembl gene annotation system
    • Aken, B.L. et al. (2016) The Ensembl gene annotation system. Database, 2016.
    • (2016) Database , vol.2016
    • Aken, B.L.1
  • 2
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi, B. et al. (2015) Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotech., 33, 831-838.
    • (2015) Nat. Biotech. , vol.33 , pp. 831-838
    • Alipanahi, B.1
  • 3
    • 84884660617 scopus 로고    scopus 로고
    • Gene expression regulation by upstream open reading frames and human disease
    • Barbosa, C. et al. (2013) Gene expression regulation by upstream open reading frames and human disease. PLOS Genet., 9, e1003529.
    • (2013) PLOS Genet. , vol.9 , pp. e1003529
    • Barbosa, C.1
  • 5
    • 85047011481 scopus 로고    scopus 로고
    • Algorithms for hyper-parameter optimization
    • Shawe-Taylor, J. et al., eds Curran Associates, Inc
    • Bergstra, J.S. et al. (2011). Algorithms for hyper-parameter optimization. In Shawe-Taylor, J. et al., eds. Advances in Neural Information Processing Systems 24. Curran Associates, Inc, pp. 2546-2554.
    • (2011) Advances in Neural Information Processing Systems 24 , pp. 2546-2554
    • Bergstra, J.S.1
  • 6
    • 84961378914 scopus 로고    scopus 로고
    • Detecting actively translated open reading frames in ribosome profiling data
    • Calviello, L. et al. (2016) Detecting actively translated open reading frames in ribosome profiling data. Nat. Methods, 13, 165-170.
    • (2016) Nat. Methods , vol.13 , pp. 165-170
    • Calviello, L.1
  • 7
    • 66149118241 scopus 로고    scopus 로고
    • Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans
    • Calvo, S.E. et al. (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci., 106, 7507-7512.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 7507-7512
    • Calvo, S.E.1
  • 8
    • 84969919834 scopus 로고    scopus 로고
    • Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish
    • Chew, G.-L. et al. (2016) Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nat. Commun., 7, 11663.
    • (2016) Nat. Commun. , vol.7 , pp. 11663
    • Chew, G.-L.1
  • 9
    • 80053558787 scopus 로고    scopus 로고
    • Natural language processing (almost) from scratch
    • Collobert, R. et al. (2011) Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12, 2493-2537.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2493-2537
    • Collobert, R.1
  • 10
    • 84946069451 scopus 로고    scopus 로고
    • Uniprot: A hub for protein information
    • UniProt Consortium (2015) Uniprot: A hub for protein information. Nucleic Acids Res., 43, D204-D212.
    • (2015) Nucleic Acids Res. , vol.43 , pp. D204-D212
    • Consortium, U.1
  • 11
    • 84867478719 scopus 로고    scopus 로고
    • Learning where to attend with deep architectures for image tracking
    • Denil, M. et al. (2012) Learning where to attend with deep architectures for image tracking. Neural Comput., 24, 2151-2184.
    • (2012) Neural Comput. , vol.24 , pp. 2151-2184
    • Denil, M.1
  • 12
    • 84879984918 scopus 로고    scopus 로고
    • Tuning gene expression with synthetic upstream open reading frames
    • Ferreira, J.P. et al. (2013) Tuning gene expression with synthetic upstream open reading frames. Proc. Natl. Acad. Sci., 110, 11284-11289.
    • (2013) Proc. Natl. Acad. Sci. , vol.110 , pp. 11284-11289
    • Ferreira, J.P.1
  • 13
    • 84946040120 scopus 로고    scopus 로고
    • COSMIC: Exploring the world's knowledge of somatic mutations in human cancer
    • Forbes, S.A. et al.
    • Forbes, S.A. et al. (2015) COSMIC: Exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res., 43, D805-D811.
    • (2015) Nucleic Acids Res. , vol.43 , pp. D805-D811
  • 14
    • 84926190005 scopus 로고    scopus 로고
    • Quantitative profiling of initiating ribosomes in vivo
    • Gao, X. et al. (2015) Quantitative profiling of initiating ribosomes in vivo. Nat. Methods, 12, 147-153.
    • (2015) Nat. Methods , vol.12 , pp. 147-153
    • Gao, X.1
  • 15
    • 84857938446 scopus 로고    scopus 로고
    • Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins
    • Geiger, T. et al. (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteomics, 11
    • (2012) Mol. Cell. Proteomics , vol.11
    • Geiger, T.1
  • 16
    • 85013296104 scopus 로고    scopus 로고
    • DeeperBind: Enhancing prediction of sequence specificities of DNA binding proteins
    • Shenzhen, China, December 15-18, 2016
    • Hassanzadeh, H.R., and Wang, M.D. (2016). DeeperBind: enhancing prediction of sequence specificities of DNA binding proteins. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, Shenzhen, China, December 15-18, 2016, pp. 178-183.
    • (2016) IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016 , pp. 178-183
    • Hassanzadeh, H.R.1    Wang, M.D.2
  • 17
    • 0036184759 scopus 로고    scopus 로고
    • Translation initiation start prediction in human cDNAs with high accuracy
    • Hatzigeorgiou, A.G. (2002) Translation initiation start prediction in human cDNAs with high accuracy. Bioinformatics, 18, 343-350.
    • (2002) Bioinformatics , vol.18 , pp. 343-350
    • Hatzigeorgiou, A.G.1
  • 18
    • 84870734901 scopus 로고    scopus 로고
    • Principles of translational control: An overview
    • Hershey, J.W. et al. (2012) Principles of translational control: an overview. Cold Spring Harbor Perspect. Biol., 4, a011528.
    • (2012) Cold Spring Harbor Perspect. Biol. , vol.4 , pp. a011528
    • Hershey, J.W.1
  • 19
    • 84975072542 scopus 로고    scopus 로고
    • Translational control by 5'-untranslated regions of eukaryotic mRNAs
    • Hinnebusch, A.G. et al. (2016) Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science, 352, 1413-1416.
    • (2016) Science , vol.352 , pp. 1413-1416
    • Hinnebusch, A.G.1
  • 20
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G. et al. (2012) Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process Mag., 29, 82-97.
    • (2012) IEEE Signal Process Mag. , vol.29 , pp. 82-97
    • Hinton, G.1
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., and Salakhutdinov, R.R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 22
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E. et al. (2006) A fast learning algorithm for deep belief nets. Neural Comput., 18, 1527-1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1
  • 23
    • 62549134121 scopus 로고    scopus 로고
    • Genome-wide analysis in vivo of translation with nu-cleotide resolution using ribosome profiling
    • Ingolia, N.T. et al. (2009) Genome-wide analysis in vivo of translation with nu-cleotide resolution using ribosome profiling. Science, 324, 218-223.
    • (2009) Science , vol.324 , pp. 218-223
    • Ingolia, N.T.1
  • 24
    • 84864453787 scopus 로고    scopus 로고
    • The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA frag-ments
    • Ingolia, N.T. et al. (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA frag-ments. Nat. Protoc., 7, 1534-1550.
    • (2012) Nat. Protoc. , vol.7 , pp. 1534-1550
    • Ingolia, N.T.1
  • 25
    • 75149196287 scopus 로고    scopus 로고
    • The mechanism of eukaryotic translation initiation and principles of its regulation
    • Jackson, R.J. et al. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell. Biol., 11, 113-127.
    • (2010) Nat. Rev. Mol. Cell. Biol. , vol.11 , pp. 113-127
    • Jackson, R.J.1
  • 26
    • 0024394362 scopus 로고
    • Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems
    • Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Molecular and Cellular Biology, 9, 5073-5080.
    • (1989) Molecular and Cellular Biology , vol.9 , pp. 5073-5080
    • Kozak, M.1
  • 27
    • 0036021444 scopus 로고    scopus 로고
    • Emerging links between initiation of translation and human diseases
    • Kozak, M. (2002) Emerging links between initiation of translation and human diseases. Mamm. Genome, 13, 401-410.
    • (2002) Mamm. Genome , vol.13 , pp. 401-410
    • Kozak, M.1
  • 28
    • 85162061663 scopus 로고    scopus 로고
    • Learning to combine foveal glimpses with a third-order boltzmann machine
    • Lafferty, J. et al. eds Curran Associates, Inc., Red Hook, NY 12571
    • Larochelle, H., and Hinton, G. (2010). Learning to combine foveal glimpses with a third-order boltzmann machine. In Lafferty, J. et al. eds. Advances in Neural Information Processing Systems, Curran Associates, Inc., Red Hook, NY 12571, Vol. 23, pp. 1243-1251.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1243-1251
    • Larochelle, H.1    Hinton, G.2
  • 29
    • 84866267681 scopus 로고    scopus 로고
    • Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution
    • Lee, S. et al. (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl. Acad. Sci., 109, E2424-E2432.
    • (2012) Proc. Natl. Acad. Sci. , vol.109 , pp. E2424-E2432
    • Lee, S.1
  • 31
    • 23844478874 scopus 로고    scopus 로고
    • A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs
    • Li, H., and Jiang, T. (2005) A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs. J. Comput. Biol., 12, 702-718.
    • (2005) J. Comput. Biol. , vol.12 , pp. 702-718
    • Li, H.1    Jiang, T.2
  • 32
    • 78650642557 scopus 로고    scopus 로고
    • Defining the transcriptome and proteome in three functionally different human cell lines
    • Lundberg, E. et al. (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol., 6, 450.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 450
    • Lundberg, E.1
  • 33
    • 84923927316 scopus 로고    scopus 로고
    • Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning
    • Michel, A.M. et al. (2014) Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning. BMC Bioinform., 15, 380.
    • (2014) BMC Bioinform. , vol.15 , pp. 380
    • Michel, A.M.1
  • 34
    • 84896397929 scopus 로고    scopus 로고
    • Global analyses of the effect of different cellular contexts on MicroRNA targeting
    • Nam, J.-W. et al. (2014) Global analyses of the effect of different cellular contexts on MicroRNA targeting. Mol. Cell, 53, 1031-1043.
    • (2014) Mol. Cell , vol.53 , pp. 1031-1043
    • Nam, J.-W.1
  • 35
    • 84907338120 scopus 로고    scopus 로고
    • Quantitative analysis of mammalian translation initiation sites by FACS-seq
    • Noderer, W.L. et al. (2014) Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol. Syst. Biol., 10, 748.
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 748
    • Noderer, W.L.1
  • 36
    • 0024559617 scopus 로고
    • Translation initiation at non-AUG triplets in mammalian cells
    • Peabody, D.S. (1989) Translation initiation at non-AUG triplets in mammalian cells. J. Biol. Chem., 264, 5031-5035.
    • (1989) J. Biol. Chem. , vol.264 , pp. 5031-5035
    • Peabody, D.S.1
  • 37
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Pedregosa, F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach. Learn. Res., 12, 2825-2830.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 38
    • 84976413226 scopus 로고    scopus 로고
    • DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
    • Quang, D., and Xie, X. (2016) DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res., 44, e107.
    • (2016) Nucleic Acids Res. , vol.44 , pp. e107
    • Quang, D.1    Xie, X.2
  • 39
    • 84994187965 scopus 로고    scopus 로고
    • PreTIS: A tool to predict non-canonical 5' UTR transla-tional initiation sites in human and mouse
    • Reuter, K. et al. (2016) PreTIS: A tool to predict non-canonical 5' UTR transla-tional initiation sites in human and mouse. PLOS Comput. Biol., 12, e1005170.
    • (2016) PLOS Comput. Biol. , vol.12 , pp. e1005170
    • Reuter, K.1
  • 40
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E. et al. (1986) Learning representations by back-propagating errors. Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1
  • 42
    • 60149091189 scopus 로고    scopus 로고
    • Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
    • Sonenberg, N., and Hinnebusch, A.G. (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 136, 731-745.
    • (2009) Cell , vol.136 , pp. 731-745
    • Sonenberg, N.1    Hinnebusch, A.G.2
  • 43
    • 84898932317 scopus 로고    scopus 로고
    • Maximum-margin matrix factorization
    • Srebro, N. et al. (2005). Maximum-margin matrix factorization. Adv. Neural Inform. Process. Syst., 17, 1329-1336.
    • (2005) Adv. Neural Inform. Process. Syst. , vol.17 , pp. 1329-1336
    • Srebro, N.1
  • 44
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava, N. et al. (2014) Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1929-1958
    • Srivastava, N.1
  • 45
    • 84864463147 scopus 로고    scopus 로고
    • Seq2Logo: A method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion
    • Thomsen, M.C.F., and Nielsen, M. (2012) Seq2Logo: A method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res., 40, W281-W287.
    • (2012) Nucleic Acids Res. , vol.40 , pp. W281-W287
    • Thomsen, M.C.F.1    Nielsen, M.2
  • 47
    • 0018254569 scopus 로고
    • RNA secondary structure: A complete mathematical analysis
    • Waterman, M., and Smith, T. (1978) RNA secondary structure: A complete mathematical analysis. Math. Biosci., 42, 257-266.
    • (1978) Math. Biosci. , vol.42 , pp. 257-266
    • Waterman, M.1    Smith, T.2
  • 48
    • 80053018555 scopus 로고    scopus 로고
    • Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease
    • Wolf, A. et al. (2011) Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease. Hum. Mutat., 32, 1137-1143.
    • (2011) Hum. Mutat. , vol.32 , pp. 1137-1143
    • Wolf, A.1
  • 49
    • 84960503750 scopus 로고    scopus 로고
    • A deep learning framework for modeling structural features of RNA-binding protein targets
    • Zhang, S. et al. (2015) A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res., 44, e32.
    • (2015) Nucleic Acids Res. , vol.44 , pp. e32
    • Zhang, S.1
  • 51
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J., and Troyanskaya, O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934.
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 52
    • 0033670134 scopus 로고    scopus 로고
    • Engineering support vector machine kernels that recognize translation initiation sites
    • Zien, A. et al. (2000) Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics, 16, 799-807.
    • (2000) Bioinformatics , vol.16 , pp. 799-807
    • Zien, A.1
  • 53
    • 84880766519 scopus 로고    scopus 로고
    • New universal rules of eukaryotic translation initiation fidelity
    • Zur, H., and Tuller, T. (2013) New universal rules of eukaryotic translation initiation fidelity. PLOS Comput. Biol., 9, e1003136.
    • (2013) PLOS Comput. Biol. , vol.9 , pp. e1003136
    • Zur, H.1    Tuller, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.