메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 2892-2901

Deep recurrent neural network-based identification of precursor microRNAs

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; DEEP NEURAL NETWORKS; RECURRENT NEURAL NETWORKS;

EID: 85047003917     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (32)

References (40)
  • 1
    • 84859104445 scopus 로고    scopus 로고
    • MiRANN: A reliable approach for improved classification of precursor microRNA using artificial neural network model
    • M. E. Rahman, et al. MiRANN: A reliable approach for improved classification of precursor microRNA using Artificial Neural Network model. Genomics, 99(4):189-194, 2012.
    • (2012) Genomics , vol.99 , Issue.4 , pp. 189-194
    • Rahman, M.E.1
  • 2
    • 84939821074 scopus 로고    scopus 로고
    • Show, attend and tell: Neural image caption generation with visual attention
    • K. Xu, et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In ICML, Volume 14, pages 77-81, 2015.
    • (2015) ICML , vol.14 , pp. 77-81
    • Xu, K.1
  • 5
    • 0043123153 scopus 로고    scopus 로고
    • Vienna RNA secondary structure server
    • I. L. Hofacker. Vienna RNA secondary structure server. Nucleic acids research, 31(13):3429-3431, 2003.
    • (2003) Nucleic Acids Research , vol.31 , Issue.13 , pp. 3429-3431
    • Hofacker, I.L.1
  • 6
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980, 2014.
    • (2014) CoRR
    • Kingma, D.P.1    Ba, J.2
  • 7
    • 84928012861 scopus 로고    scopus 로고
    • MiRBoost: Boosting support vector Machines for microRNA precursor classification
    • V. D. T. Tran, et al. miRBoost: boosting support vector machines for microRNA precursor classification. RNA, 21(5):775-785, 2015.
    • (2015) RNA , vol.21 , Issue.5 , pp. 775-785
    • Tran, V.D.T.1
  • 8
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 9
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166, 1994.
    • (1994) Neural Networks, IEEE Transactions On , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 11
    • 64549116289 scopus 로고    scopus 로고
    • MicroPred: Effective classification of pre-miRNAs for human miRNA gene prediction
    • R. Batuwita and V. Palade. microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics, 25(8):989-995, 2009.
    • (2009) Bioinformatics , vol.25 , Issue.8 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 12
    • 34547596338 scopus 로고    scopus 로고
    • MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features
    • P. Jiang, et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic acids research, 35(suppl 2):W339-W344, 2007.
    • (2007) Nucleic Acids Research , vol.35 , pp. W339-W344
    • Jiang, P.1
  • 13
    • 75149197426 scopus 로고    scopus 로고
    • Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM)
    • S. Agarwal, et al. Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC bioinformatics, 11(Suppl 1):S29, 2010.
    • (2010) BMC Bioinformatics , vol.11 , pp. S29
    • Agarwal, S.1
  • 14
    • 77956508095 scopus 로고    scopus 로고
    • MIReNA: Finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data
    • A. Mathelier and A. Carbone. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics, 26(18):2226-2234, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.18 , pp. 2226-2234
    • Mathelier, A.1    Carbone, A.2
  • 15
    • 30344447264 scopus 로고    scopus 로고
    • Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector Machine
    • C. Xue, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC bioinformatics, 6(1):310, 2005.
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 310
    • Xue, C.1
  • 16
    • 0027751663 scopus 로고
    • The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • R. C. Lee, R. L. Feinbaum, and V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5):843-854, 1993.
    • (1993) Cell , vol.75 , Issue.5 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 17
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • D. P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 116(2):281-297, 2004.
    • (2004) Cell , vol.116 , Issue.2 , pp. 281-297
    • Bartel, D.P.1
  • 18
    • 84878213539 scopus 로고    scopus 로고
    • Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role
    • D. Kleftogiannis, et al. Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role. Journal of biomedical informatics, 46(3):563-573, 2013.
    • (2013) Journal of Biomedical Informatics , vol.46 , Issue.3 , pp. 563-573
    • Kleftogiannis, D.1
  • 19
    • 84902118176 scopus 로고    scopus 로고
    • The discriminant power of RNA features for pre-miRNA recognition
    • I. de ON Lopes, A. Schliep, and A. C. d. L. de Carvalho. The discriminant power of RNA features for pre-miRNA recognition. BMC bioinformatics, 15(1):1, 2014.
    • (2014) BMC Bioinformatics , vol.15 , Issue.1 , pp. 1
    • De On, I.1    Lopes, A.S.2    De Carvalho, A.C.D.L.3
  • 21
    • 34047199201 scopus 로고    scopus 로고
    • Complexity of pseudoknot prediction in simple models
    • Springer
    • R. B. Lyngsø. Complexity of pseudoknot prediction in simple models. In Automata, Languages and Programming, pages 919-931. Springer, 2004.
    • (2004) Automata, Languages and Programming , pp. 919-931
    • Lyngsø, R.B.1
  • 23
    • 33846056835 scopus 로고    scopus 로고
    • FRNAdb: A platform for mining/annotating functional RNA candidates from non-coding RNA sequences
    • T. Kin, et al. fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic acids research, 35(suppl 1):D145-D148, 2007.
    • (2007) Nucleic Acids Research , vol.35 , pp. D145-D148
    • Kin, T.1
  • 24
    • 84881527225 scopus 로고    scopus 로고
    • NONCODE v3.0: Integrative annotation of long noncoding RNAs
    • D. Bu, et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic acids research, page gkr1175, 2011.
    • (2011) Nucleic Acids Research , pp. gkr1175
    • Bu, D.1
  • 25
    • 33644750115 scopus 로고    scopus 로고
    • MiRBase: Microrna sequences, targets and gene nomenclature
    • S. Griffiths-Jones, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research, 34(suppl 1):D140-D144, 2006.
    • (2006) Nucleic Acids Research , vol.34 , pp. D140-D144
    • Griffiths-Jones, S.1
  • 26
    • 33644875300 scopus 로고    scopus 로고
    • SnoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs
    • L. Lestrade and M. J. Weber. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic acids research, 34(suppl 1):D158-D162, 2006.
    • (2006) Nucleic Acids Research , vol.34 , pp. D158-D162
    • Lestrade, L.1    Weber, M.J.2
  • 27
    • 33847215211 scopus 로고
    • Stochastic gradient learning in neural networks
    • L. Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nimes, 91(8), 1991.
    • (1991) Proceedings of Neuro-Nimes , vol.91 , Issue.8
    • Bottou, L.1
  • 28
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4:2, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning , vol.4 , pp. 2
    • Tieleman, T.1    Hinton, G.2
  • 31
    • 4544259831 scopus 로고    scopus 로고
    • Logistic regression in rare events data
    • G. King and L. Zeng. Logistic regression in rare events data. Political analysis, 9(2):137-163, 2001.
    • (2001) Political Analysis , vol.9 , Issue.2 , pp. 137-163
    • King, G.1    Zeng, L.2
  • 33
    • 84959282542 scopus 로고    scopus 로고
    • Nucleotide sequence of miRNA precursor contributes to cleavage site selection by dicer
    • J. Starega-Roslan, P. Galka-Marciniak, and W. J. Krzyzosiak. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer. Nucleic acids research, 43(22):10939-10951, 2015.
    • (2015) Nucleic Acids Research , vol.43 , Issue.22 , pp. 10939-10951
    • Starega-Roslan, J.1    Galka-Marciniak, P.2    Krzyzosiak, W.J.3
  • 34
    • 41849084855 scopus 로고    scopus 로고
    • Discovering microRNAs from deep sequencing data using miRDeep
    • M. R. Friedländer, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nature biotechnology, 26(4):407-415, 2008.
    • (2008) Nature Biotechnology , vol.26 , Issue.4 , pp. 407-415
    • Friedländer, M.R.1
  • 35
    • 65849520676 scopus 로고    scopus 로고
    • Current tools for the identification of miRNA genes and their targets
    • N. Mendes, A. T. Freitas, and M.-F. Sagot. Current tools for the identification of miRNA genes and their targets. Nucleic acids research, 37(8):2419-2433, 2009.
    • (2009) Nucleic Acids Research , vol.37 , Issue.8 , pp. 2419-2433
    • Mendes, N.1    Freitas, A.T.2    Sagot, M.-F.3
  • 36
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111-3119, 2013.
    • (2013) Advances in Neural Information Processing Systems , pp. 3111-3119
    • Mikolov, T.1
  • 38
    • 84954423740 scopus 로고    scopus 로고
    • IMiRNA-SSF: Improving the identification of MicroRNA precursors by combining negative sets with different distributions
    • J. Chen, X. Wang, and B. Liu. IMiRNA-SSF: improving the identification of MicroRNA precursors by combining negative sets with different distributions. Scientific reports, 6, 2016.
    • (2016) Scientific Reports , vol.6
    • Chen, J.1    Wang, X.2    Liu, B.3
  • 39
    • 84901332555 scopus 로고    scopus 로고
    • Improved and promising identification of human microRNAs by incorporating a high-quality negative set
    • L. Wei, et al. Improved and promising identification of human microRNAs by incorporating a high-quality negative set. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1):192-201, 2014.
    • (2014) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.11 , Issue.1 , pp. 192-201
    • Wei, L.1
  • 40
    • 34247990255 scopus 로고
    • On the kolmogorov-smirnov test for Normality with mean and variance unknown
    • H. W. Lilliefors. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American statistical Association, 62(318):399-402, 1967.
    • (1967) Journal of the American Statistical Association , vol.62 , Issue.318 , pp. 399-402
    • Lilliefors, H.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.