-
1
-
-
84859104445
-
MiRANN: A reliable approach for improved classification of precursor microRNA using artificial neural network model
-
M. E. Rahman, et al. MiRANN: A reliable approach for improved classification of precursor microRNA using Artificial Neural Network model. Genomics, 99(4):189-194, 2012.
-
(2012)
Genomics
, vol.99
, Issue.4
, pp. 189-194
-
-
Rahman, M.E.1
-
2
-
-
84939821074
-
Show, attend and tell: Neural image caption generation with visual attention
-
K. Xu, et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In ICML, Volume 14, pages 77-81, 2015.
-
(2015)
ICML
, vol.14
, pp. 77-81
-
-
Xu, K.1
-
5
-
-
0043123153
-
Vienna RNA secondary structure server
-
I. L. Hofacker. Vienna RNA secondary structure server. Nucleic acids research, 31(13):3429-3431, 2003.
-
(2003)
Nucleic Acids Research
, vol.31
, Issue.13
, pp. 3429-3431
-
-
Hofacker, I.L.1
-
6
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980, 2014.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
-
7
-
-
84928012861
-
MiRBoost: Boosting support vector Machines for microRNA precursor classification
-
V. D. T. Tran, et al. miRBoost: boosting support vector machines for microRNA precursor classification. RNA, 21(5):775-785, 2015.
-
(2015)
RNA
, vol.21
, Issue.5
, pp. 775-785
-
-
Tran, V.D.T.1
-
8
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
9
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166, 1994.
-
(1994)
Neural Networks, IEEE Transactions On
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
11
-
-
64549116289
-
MicroPred: Effective classification of pre-miRNAs for human miRNA gene prediction
-
R. Batuwita and V. Palade. microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics, 25(8):989-995, 2009.
-
(2009)
Bioinformatics
, vol.25
, Issue.8
, pp. 989-995
-
-
Batuwita, R.1
Palade, V.2
-
12
-
-
34547596338
-
MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features
-
P. Jiang, et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic acids research, 35(suppl 2):W339-W344, 2007.
-
(2007)
Nucleic Acids Research
, vol.35
, pp. W339-W344
-
-
Jiang, P.1
-
13
-
-
75149197426
-
Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM)
-
S. Agarwal, et al. Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC bioinformatics, 11(Suppl 1):S29, 2010.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. S29
-
-
Agarwal, S.1
-
14
-
-
77956508095
-
MIReNA: Finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data
-
A. Mathelier and A. Carbone. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics, 26(18):2226-2234, 2010.
-
(2010)
Bioinformatics
, vol.26
, Issue.18
, pp. 2226-2234
-
-
Mathelier, A.1
Carbone, A.2
-
15
-
-
30344447264
-
Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector Machine
-
C. Xue, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC bioinformatics, 6(1):310, 2005.
-
(2005)
BMC Bioinformatics
, vol.6
, Issue.1
, pp. 310
-
-
Xue, C.1
-
16
-
-
0027751663
-
The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
-
R. C. Lee, R. L. Feinbaum, and V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5):843-854, 1993.
-
(1993)
Cell
, vol.75
, Issue.5
, pp. 843-854
-
-
Lee, R.C.1
Feinbaum, R.L.2
Ambros, V.3
-
17
-
-
0347444723
-
MicroRNAs: Genomics, biogenesis, mechanism, and function
-
D. P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 116(2):281-297, 2004.
-
(2004)
Cell
, vol.116
, Issue.2
, pp. 281-297
-
-
Bartel, D.P.1
-
18
-
-
84878213539
-
Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role
-
D. Kleftogiannis, et al. Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role. Journal of biomedical informatics, 46(3):563-573, 2013.
-
(2013)
Journal of Biomedical Informatics
, vol.46
, Issue.3
, pp. 563-573
-
-
Kleftogiannis, D.1
-
19
-
-
84902118176
-
The discriminant power of RNA features for pre-miRNA recognition
-
I. de ON Lopes, A. Schliep, and A. C. d. L. de Carvalho. The discriminant power of RNA features for pre-miRNA recognition. BMC bioinformatics, 15(1):1, 2014.
-
(2014)
BMC Bioinformatics
, vol.15
, Issue.1
, pp. 1
-
-
De On, I.1
Lopes, A.S.2
De Carvalho, A.C.D.L.3
-
21
-
-
34047199201
-
Complexity of pseudoknot prediction in simple models
-
Springer
-
R. B. Lyngsø. Complexity of pseudoknot prediction in simple models. In Automata, Languages and Programming, pages 919-931. Springer, 2004.
-
(2004)
Automata, Languages and Programming
, pp. 919-931
-
-
Lyngsø, R.B.1
-
23
-
-
33846056835
-
FRNAdb: A platform for mining/annotating functional RNA candidates from non-coding RNA sequences
-
T. Kin, et al. fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic acids research, 35(suppl 1):D145-D148, 2007.
-
(2007)
Nucleic Acids Research
, vol.35
, pp. D145-D148
-
-
Kin, T.1
-
24
-
-
84881527225
-
NONCODE v3.0: Integrative annotation of long noncoding RNAs
-
D. Bu, et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic acids research, page gkr1175, 2011.
-
(2011)
Nucleic Acids Research
, pp. gkr1175
-
-
Bu, D.1
-
25
-
-
33644750115
-
MiRBase: Microrna sequences, targets and gene nomenclature
-
S. Griffiths-Jones, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research, 34(suppl 1):D140-D144, 2006.
-
(2006)
Nucleic Acids Research
, vol.34
, pp. D140-D144
-
-
Griffiths-Jones, S.1
-
26
-
-
33644875300
-
SnoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs
-
L. Lestrade and M. J. Weber. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic acids research, 34(suppl 1):D158-D162, 2006.
-
(2006)
Nucleic Acids Research
, vol.34
, pp. D158-D162
-
-
Lestrade, L.1
Weber, M.J.2
-
27
-
-
33847215211
-
Stochastic gradient learning in neural networks
-
L. Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nimes, 91(8), 1991.
-
(1991)
Proceedings of Neuro-Nimes
, vol.91
, Issue.8
-
-
Bottou, L.1
-
28
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4:2, 2012.
-
(2012)
COURSERA: Neural Networks for Machine Learning
, vol.4
, pp. 2
-
-
Tieleman, T.1
Hinton, G.2
-
31
-
-
4544259831
-
Logistic regression in rare events data
-
G. King and L. Zeng. Logistic regression in rare events data. Political analysis, 9(2):137-163, 2001.
-
(2001)
Political Analysis
, vol.9
, Issue.2
, pp. 137-163
-
-
King, G.1
Zeng, L.2
-
33
-
-
84959282542
-
Nucleotide sequence of miRNA precursor contributes to cleavage site selection by dicer
-
J. Starega-Roslan, P. Galka-Marciniak, and W. J. Krzyzosiak. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer. Nucleic acids research, 43(22):10939-10951, 2015.
-
(2015)
Nucleic Acids Research
, vol.43
, Issue.22
, pp. 10939-10951
-
-
Starega-Roslan, J.1
Galka-Marciniak, P.2
Krzyzosiak, W.J.3
-
34
-
-
41849084855
-
Discovering microRNAs from deep sequencing data using miRDeep
-
M. R. Friedländer, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nature biotechnology, 26(4):407-415, 2008.
-
(2008)
Nature Biotechnology
, vol.26
, Issue.4
, pp. 407-415
-
-
Friedländer, M.R.1
-
35
-
-
65849520676
-
Current tools for the identification of miRNA genes and their targets
-
N. Mendes, A. T. Freitas, and M.-F. Sagot. Current tools for the identification of miRNA genes and their targets. Nucleic acids research, 37(8):2419-2433, 2009.
-
(2009)
Nucleic Acids Research
, vol.37
, Issue.8
, pp. 2419-2433
-
-
Mendes, N.1
Freitas, A.T.2
Sagot, M.-F.3
-
36
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111-3119, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 3111-3119
-
-
Mikolov, T.1
-
37
-
-
85017639980
-
DP-miRNA: An improved prediction of precursor microRNA using deep learning model
-
IEEE
-
J. Thomas, S. Thomas, and L. Sael. DP-miRNA: An improved prediction of precursor microRNA using deep learning model. In Big Data and Smart Computing (BigComp), 2017 IEEE International Conference on, pages 96-99. IEEE, 2017.
-
(2017)
Big Data and Smart Computing (BigComp), 2017 IEEE International Conference On
, pp. 96-99
-
-
Thomas, J.1
Thomas, S.2
Sael, L.3
-
38
-
-
84954423740
-
IMiRNA-SSF: Improving the identification of MicroRNA precursors by combining negative sets with different distributions
-
J. Chen, X. Wang, and B. Liu. IMiRNA-SSF: improving the identification of MicroRNA precursors by combining negative sets with different distributions. Scientific reports, 6, 2016.
-
(2016)
Scientific Reports
, vol.6
-
-
Chen, J.1
Wang, X.2
Liu, B.3
-
39
-
-
84901332555
-
Improved and promising identification of human microRNAs by incorporating a high-quality negative set
-
L. Wei, et al. Improved and promising identification of human microRNAs by incorporating a high-quality negative set. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1):192-201, 2014.
-
(2014)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.11
, Issue.1
, pp. 192-201
-
-
Wei, L.1
-
40
-
-
34247990255
-
On the kolmogorov-smirnov test for Normality with mean and variance unknown
-
H. W. Lilliefors. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American statistical Association, 62(318):399-402, 1967.
-
(1967)
Journal of the American Statistical Association
, vol.62
, Issue.318
, pp. 399-402
-
-
Lilliefors, H.W.1
|