메뉴 건너뛰기




Volumn 34, Issue 5, 2018, Pages 828-835

Drug-drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA MINING; DRUG INTERACTION; DRUG SURVEILLANCE PROGRAM; HUMAN; PROCEDURES; PUBLICATION;

EID: 85042940451     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx659     Document Type: Article
Times cited : (144)

References (38)
  • 1
    • 0142166851 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Bengio, Y. et al. (2003) A neural probabilistic language model. J. Mach. Learn. Res., 3, 1137-1155.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1137-1155
    • Bengio, Y.1
  • 2
    • 84980583466 scopus 로고    scopus 로고
    • UTurku: Drug named entity recognition and drug-drug interaction extraction using SVM classification and domain knowledge
    • Atlanta, Georgia, USA
    • Bjorne, J. et al. (2013) UTurku: drug named entity recognition and drug-drug interaction extraction using SVM classification and domain knowledge. In: 7th International Workshop on Semantic Evaluation, Atlanta, Georgia, USA, pp. 651-659.
    • (2013) 7th International Workshop on Semantic Evaluation , pp. 651-659
    • Bjorne, J.1
  • 3
    • 68849122305 scopus 로고    scopus 로고
    • SFINX-A drug-drug interaction database designed for clinical decision support systems
    • Bottiger, Y. et al. (2009) SFINX-A drug-drug interaction database designed for clinical decision support systems. Eur. J. Clin. Pharmacol., 65, 627-633.
    • (2009) Eur. J. Clin. Pharmacol. , vol.65 , pp. 627-633
    • Bottiger, Y.1
  • 5
    • 85021209855 scopus 로고    scopus 로고
    • FBK-irst: A multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information
    • Atlanta, Georgia, USA
    • Chowdhury, M.F.M., and Lavelli, A. (2013) FBK-irst: A multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information. In: 7th InternationalWorkshop on Semantic Evaluation, Atlanta, Georgia, USA, pp. 351-355.
    • (2013) 7th InternationalWorkshop on Semantic Evaluation , pp. 351-355
    • Chowdhury, M.F.M.1    Lavelli, A.2
  • 6
    • 9444266406 scopus 로고    scopus 로고
    • On graph kernels: Hardness results and efficient alternatives
    • In: Scholkopf, B. and Warmuth, M.K. (eds.) Springer, Berlin
    • Gartner, T. et al. (2003) On graph kernels: hardness results and efficient alternatives. In: Scholkopf, B. and Warmuth, M.K. (eds.) Learning Theory and Kernel Machines. Springer, Berlin, pp. 129-143.
    • (2003) Learning Theory and Kernel Machines , pp. 129-143
    • Gartner, T.1
  • 7
    • 79952279470 scopus 로고    scopus 로고
    • A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database
    • Hachad, H. et al. (2010) A useful tool for drug interaction evaluation: the University of Washington Metabolism and Transport Drug Interaction Database. Hum. Genomics, 5, 61.
    • (2010) Hum. Genomics , vol.5 , pp. 61
    • Hachad, H.1
  • 9
    • 84883756903 scopus 로고    scopus 로고
    • The DDI corpus: An annotated corpus with pharmacological substances and drug-drug interactions
    • Herrero-Zazo, M. et al. (2013) The DDI corpus: An annotated corpus with pharmacological substances and drug-drug interactions. J. Biomed. Informatics, 46, 914-920.
    • (2013) J. Biomed. Informatics , vol.46 , pp. 914-920
    • Herrero-Zazo, M.1
  • 11
    • 84930689846 scopus 로고    scopus 로고
    • Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach
    • Kim, S. et al. (2015) Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach. J. Biomed. Informatics, 55, 23-30.
    • (2015) J. Biomed. Informatics , vol.55 , pp. 23-30
    • Kim, S.1
  • 12
    • 78651287426 scopus 로고    scopus 로고
    • DrugBank 3.0: A comprehensive resource for 'omics' research on drugs
    • Knox, C. et al. (2011) DrugBank 3.0: A comprehensive resource for 'omics' research on drugs. Nucleic Acids Res., 39, D1035-D1041.
    • (2011) Nucleic Acids Res. , vol.39 , pp. D1035-D1041
    • Knox, C.1
  • 13
    • 84959449121 scopus 로고    scopus 로고
    • Drug-drug interaction extraction via convolutional neural networks
    • Liu, S. et al. (2016) Drug-drug interaction extraction via convolutional neural networks. Comput. Math. Methods Med.
    • (2016) Comput. Math. Methods Med
    • Liu, S.1
  • 17
    • 80052031010 scopus 로고    scopus 로고
    • Adverse drug reactions and drug interactions as causes of hospital admission in oncology
    • Miranda, V. et al. (2011) Adverse drug reactions and drug interactions as causes of hospital admission in oncology. J. Pain Symptom Manage., 42, 342-353.
    • (2011) J. Pain Symptom Manage. , vol.42 , pp. 342-353
    • Miranda, V.1
  • 19
    • 84962921456 scopus 로고    scopus 로고
    • Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval
    • Palangi, H. et al. (2016) Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP), 24, 694-707.
    • (2016) IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) , vol.24 , pp. 694-707
    • Palangi, H.1
  • 21
    • 84874662621 scopus 로고    scopus 로고
    • Informatics confronts drug-drug interactions
    • Percha, B., and Altman, R.B. (2013) Informatics confronts drug-drug interactions. Trends Pharmacol. Sci., 34, 178-184.
    • (2013) Trends Pharmacol. Sci. , vol.34 , pp. 178-184
    • Percha, B.1    Altman, R.B.2
  • 22
    • 85008689576 scopus 로고    scopus 로고
    • Multichannel convolutional neural network for biological relation extraction
    • Quan, C. et al. (2016) Multichannel convolutional neural network for biological relation extraction. BioMed Res. Int.
    • (2016) BioMed Res. Int
    • Quan, C.1
  • 23
    • 84991633844 scopus 로고    scopus 로고
    • Extracting drug-drug interactions from biomedical text using a feature-based kernel approach
    • Raihani, A., and Laachfoubi, N. (2016) Extracting drug-drug interactions from biomedical text using a feature-based kernel approach. J. Theor. Appl. Inf. Technol., 92, 109.
    • (2016) J. Theor. Appl. Inf. Technol. , vol.92 , pp. 109
    • Raihani, A.1    Laachfoubi, N.2
  • 25
    • 84908008292 scopus 로고    scopus 로고
    • Lessons learnt from the DDIExtraction-2013 shared task
    • Segura-Bedmar, I. et al. (2014) Lessons learnt from the DDIExtraction-2013 shared task. J. Biomed. Informatics, 51, 152-164.
    • (2014) J. Biomed. Informatics , vol.51 , pp. 152-164
    • Segura-Bedmar, I.1
  • 26
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava, N. et al. (2014) Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1929-1958
    • Srivastava, N.1
  • 27
    • 85039705433 scopus 로고    scopus 로고
    • WBI-DDI: Drug-drug interaction extraction using majority voting
    • Atlanta, Georgia, USA
    • Thomas, P. et al. (2013) WBI-DDI: drug-drug interaction extraction using majority voting. In: 7th International Workshop on Semantic Evaluation, Atlanta, Georgia, USA. pp. 628-635.
    • (2013) 7th International Workshop on Semantic Evaluation , pp. 628-635
    • Thomas, P.1
  • 28
    • 84880383420 scopus 로고    scopus 로고
    • PharmGKB: The pharmacogenomics knowledge base
    • Thorn, C.F. et al. (2013) PharmGKB: the pharmacogenomics knowledge base. Methods Mol. Biol., 1015, 311-320.
    • (2013) Methods Mol. Biol. , vol.1015 , pp. 311-320
    • Thorn, C.F.1
  • 31
    • 84959865227 scopus 로고    scopus 로고
    • Classifying relations via long short term memory networks along shortest dependency paths
    • Lisbon, Portugal
    • Xu, Y. et al. (2015) Classifying relations via long short term memory networks along shortest dependency paths. In: Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal, pp. 1785-1794.
    • (2015) Conference on Empirical Methods in Natural Language Processing , pp. 1785-1794
    • Xu, Y.1
  • 34
    • 84959862537 scopus 로고    scopus 로고
    • Relation classification via convolutional deep neural network
    • Dublin, Ireland
    • Zeng, D. et al. (2014) Relation classification via convolutional deep neural network. In: International Conference on Computational Linguistics. Dublin, Ireland, pp. 2335-2344.
    • (2014) International Conference on Computational Linguistics , pp. 2335-2344
    • Zeng, D.1
  • 35
    • 84868334650 scopus 로고    scopus 로고
    • A single kernel-based approach to extract drug-drug interactions from biomedical literature
    • Zhang, Y. et al. (2012) A single kernel-based approach to extract drug-drug interactions from biomedical literature. PLoS One, 7, e48901.
    • (2012) PLoS One , vol.7 , pp. e48901
    • Zhang, Y.1
  • 36
    • 85008626797 scopus 로고    scopus 로고
    • Drug drug interaction extraction from biomedical literature using syntax convolutional neural network
    • Zhao, Z. et al. (2016) Drug drug interaction extraction from biomedical literature using syntax convolutional neural network. Bioinformatics, 32, 3444-3453.
    • (2016) Bioinformatics , vol.32 , pp. 3444-3453
    • Zhao, Z.1
  • 37
    • 84961669805 scopus 로고    scopus 로고
    • A graph kernel based on context vectors for extracting drug-drug interactions
    • Zheng, W. et al. (2016) A graph kernel based on context vectors for extracting drug-drug interactions. J. Biomed. Informatics, 61, 34-43.
    • (2016) J. Biomed. Informatics , vol.61 , pp. 34-43
    • Zheng, W.1
  • 38
    • 84926285904 scopus 로고    scopus 로고
    • Bilingual Word embeddings for phrase-based machine translation
    • Seattle, Washington, USA
    • Zou, W.Y. et al. (2013) Bilingual Word Embeddings for Phrase-Based Machine Translation. In: Conference on Empirical Methods in Natural Language Processing. Seattle, Washington, USA, pp. 1393-1398.
    • (2013) Conference on Empirical Methods in Natural Language Processing , pp. 1393-1398
    • Zou, W.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.