메뉴 건너뛰기




Volumn , Issue , 2016, Pages 434-442

DeepTarget: End-to-end learning framework for MicroRNA target prediction using deep recurrent neural networks

Author keywords

Deep learning; Lstm; MicroRNA; Recurrent neural networks

Indexed keywords

BIOINFORMATICS; EXTRACTION; FEATURE EXTRACTION; FORECASTING; INFORMATION SCIENCE; LEARNING SYSTEMS; NUCLEIC ACIDS; RNA;

EID: 85009747684     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2975167.2975212     Document Type: Conference Paper
Times cited : (77)

References (50)
  • 3
    • 84922932221 scopus 로고    scopus 로고
    • MB-STAR: Multiple instance learning for predicting specific functional binding sites in microRNA targets
    • S. Bandyopadhyay, D. Ghosh, R. Mitra, and Z. Zhao. MB-STAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Scientific reports, 5, 2015.
    • (2015) Scientific Reports , vol.5
    • Bandyopadhyay, S.1    Ghosh, D.2    Mitra, R.3    Zhao, Z.4
  • 4
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • D. P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297, 2004.
    • (2004) Cell , vol.116 , Issue.2 , pp. 281-297
    • Bartel, D.P.1
  • 11
    • 60149095444 scopus 로고    scopus 로고
    • Most mammalian mRNAs are conserved targets of microRNAs
    • R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bartel. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1):92-105, 2009.
    • (2009) Genome Research , vol.19 , Issue.1 , pp. 92-105
    • Friedman, R.C.1    Farh, K.K.-H.2    Burge, C.B.3    Bartel, D.P.4
  • 20
    • 34748821761 scopus 로고    scopus 로고
    • The role of site accessibility in microRNA target recognition
    • M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal. The role of site accessibility in microRNA target recognition. Nature Genetics, 39(10):1278-1284, 2007.
    • (2007) Nature Genetics , vol.39 , Issue.10 , pp. 1278-1284
    • Kertesz, M.1    Iovino, N.2    Unnerstall, U.3    Gaul, U.4    Segal, E.5
  • 25
    • 84970005752 scopus 로고    scopus 로고
    • Boosted categorical restricted boltzmann machine for computational prediction of splice junctions
    • T. Lee and S. Yoon. Boosted categorical restricted boltzmann machine for computational prediction of splice junctions. In ICML, pages 2483âǍŞ-2492, 2015.
    • (2015) ICML , pp. 2483-2492
    • Lee, T.1    Yoon, S.2
  • 30
    • 34249025114 scopus 로고    scopus 로고
    • Prediction of microRNA targets
    • P. Maziere and A. J. Enright. Prediction of microRNA targets. Drug discovery today, 12(11):452-458, 2007.
    • (2007) Drug Discovery Today , vol.12 , Issue.11 , pp. 452-458
    • Maziere, P.1    Enright, A.J.2
  • 31
    • 85003365400 scopus 로고    scopus 로고
    • MirMark: A site-level and UTR-level classifier for miRNA target prediction
    • M. Menor, T. Ching, X. Zhu, D. Garmire, and L. X. Garmire. mirMark: a site-level and UTR-level classifier for miRNA target prediction. Genome biology, 15(10):500, 2014.
    • (2014) Genome Biology , vol.15 , Issue.10 , pp. 500
    • Menor, M.1    Ching, T.2    Zhu, X.3    Garmire, D.4    Garmire, L.X.5
  • 32
    • 77951953262 scopus 로고    scopus 로고
    • Got target?: Computational methods for microRNA target prediction and their extension
    • H. Min and S. Yoon. Got target?: Computational methods for microRNA target prediction and their extension. Experimental & Molecular Medicine, 42(4):233-244, 2010.
    • (2010) Experimental & Molecular Medicine , vol.42 , Issue.4 , pp. 233-244
    • Min, H.1    Yoon, S.2
  • 34
    • 33748587841 scopus 로고    scopus 로고
    • A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes
    • K. C. Miranda, T. Huynh, Y. Tay, Y.-S. Ang, W.-L. Tam, A. M. Thomson, B. Lim, and I. Rigoutsos. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell, 126(6):1203-1217, 2006.
    • (2006) Cell , vol.126 , Issue.6 , pp. 1203-1217
    • Miranda, K.C.1    Huynh, T.2    Tay, Y.3    Ang, Y.-S.4    Tam, W.-L.5    Thomson, A.M.6    Lim, B.7    Rigoutsos, I.8
  • 38
    • 84928911070 scopus 로고    scopus 로고
    • The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
    • T. Saito and M. Rehmsmeier. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PloS One, 10(3):e0118432, 2015.
    • (2015) PloS One , vol.10 , Issue.3 , pp. e0118432
    • Saito, T.1    Rehmsmeier, M.2
  • 45
    • 84900846639 scopus 로고    scopus 로고
    • A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction
    • P. K. Srivastava, T. R. Moturu, P. Pandey, I. T. Baldwin, and S. P. Pandey. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics, 15(1):1, 2014.
    • (2014) BMC Genomics , vol.15 , Issue.1 , pp. 1
    • Srivastava, P.K.1    Moturu, T.R.2    Pandey, P.3    Baldwin, I.T.4    Pandey, S.P.5
  • 46
    • 77952671774 scopus 로고    scopus 로고
    • TargetSpy: A supervised machine learning approach for microRNA target prediction
    • M. Sturm, M. Hackenberg, D. Langenberger, and D. Frishman. TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics, 11(1):292, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 292
    • Sturm, M.1    Hackenberg, M.2    Langenberger, D.3    Frishman, D.4
  • 49
    • 58149186499 scopus 로고    scopus 로고
    • MiRecords: An integrated resource for microRNA-target interactions
    • F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, and T. Li. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Research, 37(suppl 1):D105-D110, 2009.
    • (2009) Nucleic Acids Research , vol.37 , pp. D105-D110
    • Xiao, F.1    Zuo, Z.2    Cai, G.3    Kang, S.4    Gao, X.5    Li, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.