메뉴 건너뛰기




Volumn 6, Issue 2, 2017, Pages

Roles of the intestinal microbiota in pathogen protection

Author keywords

[No Author keywords available]

Indexed keywords

BONE MARROW CELL; COMMENSAL; ETIOLOGY; GASTROINTESTINAL TRACT; HUMAN; IMMUNOCOMPETENT CELL; INNATE LYMPHOID CELL; INTESTINE; INTESTINE FLORA; LYMPHOCYTE; MOUSE; NONHUMAN; PHARMACEUTICS; PREVENTION; REVIEW;

EID: 85057213143     PISSN: None     EISSN: 20500068     Source Type: Journal    
DOI: 10.1038/cti.2017.2     Document Type: Review
Times cited : (141)

References (95)
  • 1
    • 84898808700 scopus 로고    scopus 로고
    • Meta'omic analytic techniques for studying the intestinal microbiome
    • Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014; 146: 1437–1448.e1.
    • (2014) Gastroenterology , vol.146 , pp. 1437-1448
    • Morgan, X.C.1    Huttenhower, C.2
  • 2
    • 78649895980 scopus 로고    scopus 로고
    • Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
    • Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010; 120: 4332–4341.
    • (2010) J Clin Invest , vol.120 , pp. 4332-4341
    • Ubeda, C.1    Taur, Y.2    Jenq, R.R.3    Equinda, M.J.4    Son, T.5    Samstein, M.6
  • 4
    • 84925500413 scopus 로고    scopus 로고
    • Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
    • Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2014, 517: 205–208.
    • (2014) Nature , vol.517 , pp. 205-208
    • Buffie, C.G.1    Bucci, V.2    Stein, R.R.3    McKenney, P.T.4    Ling, L.5    Gobourne, A.6
  • 5
    • 84865286121 scopus 로고    scopus 로고
    • Antibiotics, microbiota, and immune defense
    • Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol 2012; 33: 459–466.
    • (2012) Trends Immunol , vol.33 , pp. 459-466
    • Ubeda, C.1    Pamer, E.G.2
  • 6
    • 84945964162 scopus 로고    scopus 로고
    • Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract
    • Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 2015; 526: 719–722.
    • (2015) Nature , vol.526 , pp. 719-722
    • Kommineni, S.1    Bretl, D.J.2    Lam, V.3    Chakraborty, R.4    Hayward, M.5    Simpson, P.6
  • 10
    • 0036178027 scopus 로고    scopus 로고
    • Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7
    • Shin R, Suzuki M, Morishita Y. Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. J Med Microbiol 2002; 51: 201–206.
    • (2002) J Med Microbiol , vol.51 , pp. 201-206
    • Shin, R.1    Suzuki, M.2    Morishita, Y.3
  • 11
    • 84911468185 scopus 로고    scopus 로고
    • Members of the human gut microbiota involved in recovery from Vibrio cholerae infection
    • Hsiao A, Ahmed AMS, Subramanian S, Griffin NW, Drewry LL, Petri WA et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014; 515: 423–426.
    • (2014) Nature , vol.515 , pp. 423-426
    • Hsiao, A.1    Ahmed, A.M.S.2    Subramanian, S.3    Griffin, N.W.4    Drewry, L.L.5    Petri, W.A.6
  • 12
    • 0036885883 scopus 로고    scopus 로고
    • Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA
    • Lawhon SD, Maurer R, Suyemoto M, Altier C. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 2002; 46: 1451–1464.
    • (2002) Mol Microbiol , vol.46 , pp. 1451-1464
    • Lawhon, S.D.1    Maurer, R.2    Suyemoto, M.3    Altier, C.4
  • 14
    • 84892894991 scopus 로고    scopus 로고
    • Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection
    • Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 2014; 5: 1–10.
    • (2014) Nat Commun , vol.5 , pp. 1-10
    • Theriot, C.M.1    Koenigsknecht, M.J.2    Carlson, P.E.3    Hatton, G.E.4    Nelson, A.M.5    Li, B.6
  • 15
    • 84872517425 scopus 로고    scopus 로고
    • Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine
    • Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE 2013; 8: e53957.
    • (2013) Plos ONE , vol.8
    • Maltby, R.1    Leatham-Jensen, M.P.2    Gibson, T.3    Cohen, P.S.4    Conway, T.5
  • 16
    • 84861972274 scopus 로고    scopus 로고
    • Regulated virulence controls the ability of a pathogen to compete with the gut microbiota
    • Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012; 336: 1325–1329.
    • (2012) Science , vol.336 , pp. 1325-1329
    • Kamada, N.1    Kim, Y.G.2    Sham, H.P.3    Vallance, B.A.4    Puente, J.L.5    Martens, E.C.6
  • 17
    • 84885573828 scopus 로고    scopus 로고
    • Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
    • Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013; 502: 96–99.
    • (2013) Nature , vol.502 , pp. 96-99
    • Ng, K.M.1    Ferreyra, J.A.2    Higginbottom, S.K.3    Lynch, J.B.4    Kashyap, P.C.5    Gopinath, S.6
  • 18
    • 84920621547 scopus 로고    scopus 로고
    • Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance
    • Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 2014; 16: 770–777.
    • (2014) Cell Host Microbe , vol.16 , pp. 770-777
    • Ferreyra, J.A.1    Wu, K.J.2    Hryckowian, A.J.3    Bouley, D.M.4    Weimer, B.C.5    Sonnenburg, J.L.6
  • 20
    • 0031895930 scopus 로고    scopus 로고
    • The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69
    • Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, Lai LC et al. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 1998; 28: 1–4.
    • (1998) Mol Microbiol , vol.28 , pp. 1-4
    • Elliott, S.J.1    Wainwright, L.A.2    McDaniel, T.K.3    Jarvis, K.G.4    Deng, Y.K.5    Lai, L.C.6
  • 21
    • 84896851032 scopus 로고    scopus 로고
    • Intestinal epithelial cells: Regulators of barrier function and immune homeostasis
    • Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014; 14: 141–153.
    • (2014) Nat Rev Immunol , vol.14 , pp. 141-153
    • Peterson, L.W.1    Artis, D.2
  • 22
    • 77953610970 scopus 로고    scopus 로고
    • Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa
    • Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010; 6: e1000902.
    • (2010) Plos Pathog , vol.6
    • Bergstrom, K.S.B.1    Kissoon-Singh, V.2    Gibson, D.L.3    Ma, C.4    Montero, M.5    Sham, H.P.6
  • 24
    • 84864886608 scopus 로고    scopus 로고
    • Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides
    • Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol 2012; 5: 501–512.
    • (2012) Mucosal Immunol , vol.5 , pp. 501-512
    • Frantz, A.L.1    Rogier, E.W.2    Weber, C.R.3    Shen, L.4    Cohen, D.A.5    Fenton, L.A.6
  • 25
    • 34547762705 scopus 로고    scopus 로고
    • MyD88-mediated signals induce the bactericidal lectin RegIII and protect mice against intestinal Listeria monocytogenes infection
    • Brandl K, Plitas G, Schnabl B, Dematteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIII and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 2007; 204: 1891–1900.
    • (2007) J Exp Med , vol.204 , pp. 1891-1900
    • Brandl, K.1    Plitas, G.2    Schnabl, B.3    Dematteo, R.P.4    Pamer, E.G.5
  • 26
    • 58549111588 scopus 로고    scopus 로고
    • Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
    • Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 2008; 105: 20858–20863.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 20858-20863
    • Vaishnava, S.1    Behrendt, C.L.2    Ismail, A.S.3    Eckmann, L.4    Hooper, L.V.5
  • 27
  • 28
    • 80054122238 scopus 로고    scopus 로고
    • The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
    • Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334: 255–258.
    • (2011) Science , vol.334 , pp. 255-258
    • Vaishnava, S.1    Yamamoto, M.2    Severson, K.M.3    Ruhn, K.A.4    Yu, X.5    Koren, O.6
  • 29
    • 33748039462 scopus 로고    scopus 로고
    • Symbiotic bacteria direct expression of an intestinal bactericidal lectin
    • Cash HL. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006; 313: 1126–1130.
    • (2006) Science , vol.313 , pp. 1126-1130
    • Cash, H.L.1
  • 30
    • 53649098280 scopus 로고    scopus 로고
    • Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
    • Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008; 455: 804–807.
    • (2008) Nature , vol.455 , pp. 804-807
    • Brandl, K.1    Plitas, G.2    Mihu, C.N.3    Ubeda, C.4    Jia, T.5    Fleisher, M.6
  • 31
    • 84902590860 scopus 로고    scopus 로고
    • REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum
    • Loonen LMP, Stolte EH, Jaklofsky MTJ, Meijerink M, Dekker J, Van Baarlen P et al. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol 2014; 7: 939–947.
    • (2014) Mucosal Immunol , vol.7 , pp. 939-947
    • Loonen, L.M.P.1    Stolte, E.H.2    Jaklofsky, M.T.J.3    Meijerink, M.4    Dekker, J.5    van Baarlen, P.6
  • 32
    • 84936891126 scopus 로고    scopus 로고
    • Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization
    • Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med 2015; 21: 808–814.
    • (2015) Nat Med , vol.21 , pp. 808-814
    • Fan, D.1    Coughlin, L.A.2    Neubauer, M.M.3    Kim, J.4    Kim, M.S.5    Zhan, X.6
  • 33
    • 79251584066 scopus 로고    scopus 로고
    • Bifidobacteria can protect from enteropathogenic infection through production of acetate
    • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011; 469: 543–547.
    • (2011) Nature , vol.469 , pp. 543-547
    • Fukuda, S.1    Toh, H.2    Hase, K.3    Oshima, K.4    Nakanishi, Y.5    Yoshimura, K.6
  • 35
    • 84954074277 scopus 로고    scopus 로고
    • Innate lymphoid cells in intestinal immunity and inflammation
    • Bostick JW, Zhou L. Innate lymphoid cells in intestinal immunity and inflammation. Cell Mol Life Sci 2015; 73: 237–252.
    • (2015) Cell Mol Life Sci , vol.73 , pp. 237-252
    • Bostick, J.W.1    Zhou, L.2
  • 36
    • 57849117363 scopus 로고    scopus 로고
    • RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
    • Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009; 10: 83–91.
    • (2009) Nat Immunol , vol.10 , pp. 83-91
    • Sanos, S.L.1    Bui, V.L.2    Mortha, A.3    Oberle, K.4    Heners, C.5    Johner, C.6
  • 37
    • 84920929686 scopus 로고    scopus 로고
    • An enteric virus can replace the beneficial function of commensal bacteria
    • Kernbauer E, Ding Y, Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 2014; 516: 94–98.
    • (2014) Nature , vol.516 , pp. 94-98
    • Kernbauer, E.1    Ding, Y.2    Cadwell, K.3
  • 38
    • 84876780238 scopus 로고    scopus 로고
    • Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive I FN-γ-producing cells
    • Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive I FN-γ-producing cells. Immunity 2013; 38: 769–781.
    • (2013) Immunity , vol.38 , pp. 769-781
    • Fuchs, A.1    Vermi, W.2    Lee, J.S.3    Lonardi, S.4    Gilfillan, S.5    Newberry, R.D.6
  • 39
    • 84855917402 scopus 로고    scopus 로고
    • AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch
    • Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2011; 13: 144–151.
    • (2011) Nat Immunol , vol.13 , pp. 144-151
    • Lee, J.S.1    Cella, M.2    McDonald, K.G.3    Garlanda, C.4    Kennedy, G.D.5    Nukaya, M.6
  • 40
    • 84983780960 scopus 로고    scopus 로고
    • The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome
    • Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 2016; 166: 1231–1246.e13.
    • (2016) Cell , vol.166 , pp. 1231-1246
    • Gury-Benari, M.1    Thaiss, C.A.2    Serafini, N.3    Winter, D.R.4    Giladi, A.5    Lara-Astiaso, D.6
  • 41
    • 84943170553 scopus 로고    scopus 로고
    • Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection
    • Abt MC, Lewis BB, Caballero S, Xiong H, Carter RA, Sušac B et al. Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe 2015; 18: 27–37.
    • (2015) Cell Host Microbe , vol.18 , pp. 27-37
    • Abt, M.C.1    Lewis, B.B.2    Caballero, S.3    Xiong, H.4    Carter, R.A.5    Sušac, B.6
  • 43
    • 40049083827 scopus 로고    scopus 로고
    • Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
    • Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289.
    • (2008) Nat Med , vol.14 , pp. 282-289
    • Zheng, Y.1    Valdez, P.A.2    Danilenko, D.M.3    Hu, Y.4    Sa, S.M.5    Gong, Q.6
  • 44
    • 77951817855 scopus 로고    scopus 로고
    • Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
    • Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010; 464: 1367–1370.
    • (2010) Nature , vol.464 , pp. 1367-1370
    • Neill, D.R.1    Wong, S.H.2    Bellosi, A.3    Flynn, R.J.4    Daly, M.5    Langford, T.K.A.6
  • 45
    • 84936892270 scopus 로고    scopus 로고
    • Innate lymphoid cells in the initiation, regulation and resolution of inflammation
    • Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 2015; 21: 698–708.
    • (2015) Nat Med , vol.21 , pp. 698-708
    • Sonnenberg, G.F.1    Artis, D.2
  • 46
    • 84882664672 scopus 로고    scopus 로고
    • Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
    • Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013; 39: 372–385.
    • (2013) Immunity , vol.39 , pp. 372-385
    • Zelante, T.1    Iannitti, R.G.2    Cunha, C.3    de Luca, A.4    Giovannini, G.5    Pieraccini, G.6
  • 47
    • 84856237141 scopus 로고    scopus 로고
    • The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells
    • Qiu J, Heller JJ, Guo X, Chen Z-ME, Fish K, Fu Y-X et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 2012; 36: 92–104.
    • (2012) Immunity , vol.36 , pp. 92-104
    • Qiu, J.1    Heller, J.J.2    Guo, X.3    Chen, Z.-M.4    Fish, K.5    Fu, Y.-X.6
  • 48
    • 80054041992 scopus 로고    scopus 로고
    • An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor
    • Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011; 478: 197–203.
    • (2011) Nature , vol.478 , pp. 197-203
    • Opitz, C.A.1    Litzenburger, U.M.2    Sahm, F.3    Ott, M.4    Tritschler, I.5    Trump, S.6
  • 50
    • 84866158239 scopus 로고    scopus 로고
    • Protective role of commensals against Clostridium difficile infection via an IL-1-mediated positive-feedback loop
    • Hasegawa M, Kamada N, Jiao Y, Liu MZ, Nùñez G, Inohara N. Protective role of commensals against Clostridium difficile infection via an IL-1-mediated positive-feedback loop. J Immunol 2012; 189: 3085–3091.
    • (2012) J Immunol , vol.189 , pp. 3085-3091
    • Hasegawa, M.1    Kamada, N.2    Jiao, Y.3    Liu, M.Z.4    Nùñez, G.5    Inohara, N.6
  • 51
    • 76249120134 scopus 로고    scopus 로고
    • Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
    • Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16: 228–231.
    • (2010) Nat Med , vol.16 , pp. 228-231
    • Clarke, T.B.1    Davis, K.M.2    Lysenko, E.S.3    Zhou, A.Y.4    Yu, Y.5    Weiser, J.N.6
  • 52
    • 84880285461 scopus 로고    scopus 로고
    • Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection
    • Grainger JR, Wohlfert EA, Fuss IJ, Bouladoux N, Askenase MH, Legrand F et al. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat Med 2013; 19: 713–721.
    • (2013) Nat Med , vol.19 , pp. 713-721
    • Grainger, J.R.1    Wohlfert, E.A.2    Fuss, I.J.3    Bouladoux, N.4    Askenase, M.H.5    Legrand, F.6
  • 53
    • 70350343544 scopus 로고    scopus 로고
    • Induction of intestinal Th17 cells by segmented filamentous bacteria
    • Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485–498.
    • (2009) Cell , vol.139 , pp. 485-498
    • Ivanov, I.I.1    Atarashi, K.2    Manel, N.3    Brodie, E.L.4    Shima, T.5    Karaoz, U.6
  • 54
    • 22144490199 scopus 로고    scopus 로고
    • An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
    • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122: 107–118.
    • (2005) Cell , vol.122 , pp. 107-118
    • Mazmanian, S.K.1    Liu, C.H.2    Tzianabos, A.O.3    Kasper, D.L.4
  • 55
    • 85027947787 scopus 로고    scopus 로고
    • Induction of colonic regulatory T cells by indigenous Clostridium species
    • Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331: 337–341.
    • (2011) Science , vol.331 , pp. 337-341
    • Atarashi, K.1    Tanoue, T.2    Shima, T.3    Imaoka, A.4    Kuwahara, T.5    Momose, Y.6
  • 56
    • 84978431877 scopus 로고    scopus 로고
    • The microbiota in adaptive immune homeostasis and disease
    • Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016; 535: 75–84.
    • (2016) Nature , vol.535 , pp. 75-84
    • Honda, K.1    Littman, D.R.2
  • 57
    • 84867908677 scopus 로고    scopus 로고
    • Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis
    • Cao AT, Yao S, Gong B, Elson CO, Cong Y. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol 2012; 189: 4666–4673.
    • (2012) J Immunol , vol.189 , pp. 4666-4673
    • Cao, A.T.1    Yao, S.2    Gong, B.3    Elson, C.O.4    Cong, Y.5
  • 58
    • 84943638660 scopus 로고    scopus 로고
    • An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses
    • Sano T, Huang W, Hall JA, Yang Y, Chen A, Gavzy SJ et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 2015; 163: 381–393.
    • (2015) Cell , vol.163 , pp. 381-393
    • Sano, T.1    Huang, W.2    Hall, J.A.3    Yang, Y.4    Chen, A.5    Gavzy, S.J.6
  • 59
    • 84943639694 scopus 로고    scopus 로고
    • Th17 cell induction by adhesion of microbes to intestinal epithelial cells
    • Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015; 163: 367–380.
    • (2015) Cell , vol.163 , pp. 367-380
    • Atarashi, K.1    Tanoue, T.2    Ando, M.3    Kamada, N.4    Nagano, Y.5    Narushima, S.6
  • 60
    • 84879254845 scopus 로고    scopus 로고
    • GPR15-mediated homing controls immune homeostasis in the large intestine mucosa
    • Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW, Ota M et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 2013; 340: 1456–1459.
    • (2013) Science , vol.340 , pp. 1456-1459
    • Kim, S.V.1    Xiang, W.V.2    Kwak, C.3    Yang, Y.4    Lin, X.W.5    Ota, M.6
  • 61
    • 84881477044 scopus 로고    scopus 로고
    • induction by a rationally selected mixture of Clostridia strains from the human microbiota
    • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al. induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500: 232–236.
    • (2013) Nature , vol.500 , pp. 232-236
    • Atarashi, K.1    Tanoue, T.2    Oshima, K.3    Suda, W.4    Nagano, Y.5    Nishikawa, H.6
  • 62
    • 84881068658 scopus 로고    scopus 로고
    • The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
    • Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573.
    • (2013) Science , vol.341 , pp. 569-573
    • Smith, P.M.1    Howitt, M.R.2    Panikov, N.3    Michaud, M.4    Gallini, C.A.5    Bohlooly, -Y.M.6
  • 63
    • 84890564250 scopus 로고    scopus 로고
    • Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
    • Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446–450.
    • (2013) Nature , vol.504 , pp. 446-450
    • Furusawa, Y.1    Obata, Y.2    Fukuda, S.3    Endo, T.A.4    Nakato, G.5    Takahashi, D.6
  • 64
    • 84890550163 scopus 로고    scopus 로고
    • Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    • Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451–455.
    • (2013) Nature , vol.504 , pp. 451-455
    • Arpaia, N.1    Campbell, C.2    Fan, X.3    Dikiy, S.4    van der Veeken, J.5    Deroos, P.6
  • 65
    • 84897053496 scopus 로고    scopus 로고
    • Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
    • Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014; 343: 1249288–1249288.
    • (2014) Science , vol.343 , pp. 1249288-1249288
    • Mortha, A.1    Chudnovskiy, A.2    Hashimoto, D.3    Bogunovic, M.4    Spencer, S.P.5    Belkaid, Y.6
  • 66
    • 44649193919 scopus 로고    scopus 로고
    • The biology of intestinal immunoglobulin A responses
    • Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity 2008; 28: 740–750.
    • (2008) Immunity , vol.28 , pp. 740-750
    • Cerutti, A.1    Rescigno, M.2
  • 67
    • 0018092512 scopus 로고
    • Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin
    • Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun 1978; 21: 532–539.
    • (1978) Infect Immun , vol.21 , pp. 532-539
    • Moreau, M.C.1    Ducluzeau, R.2    Guy-Grand, D.3    Muller, M.C.4
  • 68
    • 84979735744 scopus 로고    scopus 로고
    • Gut microbial metabolites fuel host antibody responses
    • Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 2016; 20: 202–214.
    • (2016) Cell Host Microbe , vol.20 , pp. 202-214
    • Kim, M.1    Qie, Y.2    Park, J.3    Kim, C.H.4
  • 69
    • 84960388607 scopus 로고    scopus 로고
    • Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens
    • Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 2016; 44: 647–658.
    • (2016) Immunity , vol.44 , pp. 647-658
    • Zeng, M.Y.1    Cisalpino, D.2    Varadarajan, S.3    Hellman, J.4    Warren, H.S.5    Cascalho, M.6
  • 70
    • 35649026345 scopus 로고    scopus 로고
    • Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota
    • Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. Plos Biol 2007; 5: 2177–2189.
    • (2007) Plos Biol , vol.5 , pp. 2177-2189
    • Stecher, B.1    Robbiani, R.2    Walker, A.W.3    Westendorf, A.M.4    Barthel, M.5    Kremer, M.6
  • 71
    • 0032718594 scopus 로고    scopus 로고
    • Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa
    • Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest 1999; 104: 1107–1114.
    • (1999) J Clin Invest , vol.104 , pp. 1107-1114
    • Levitt, M.D.1    Furne, J.2    Springfield, J.3    Suarez, F.4    Demaster, E.5
  • 74
    • 34547673497 scopus 로고    scopus 로고
    • Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics
    • Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6: 662–680.
    • (2007) Nat Rev Drug Discov , vol.6 , pp. 662-680
    • Szabó, C.1    Ischiropoulos, H.2    Radi, R.3
  • 76
    • 65549099573 scopus 로고    scopus 로고
    • Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine
    • Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio S-P, Paixao TA et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 2009; 5: 476–486.
    • (2009) Cell Host Microbe , vol.5 , pp. 476-486
    • Raffatellu, M.1    George, M.D.2    Akiyama, Y.3    Hornsby, M.J.4    Nuccio, S.-P.5    Paixao, T.A.6
  • 77
    • 84894055913 scopus 로고    scopus 로고
    • The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria
    • Behnsen J, Jellbauer S, Wong CP, Edwards RA, George MD, Ouyang W et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 2014; 40: 262–273.
    • (2014) Immunity , vol.40 , pp. 262-273
    • Behnsen, J.1    Jellbauer, S.2    Wong, C.P.3    Edwards, R.A.4    George, M.D.5    Ouyang, W.6
  • 78
    • 33750795321 scopus 로고    scopus 로고
    • The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2
    • Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 2006; 103: 16502–16507.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 16502-16507
    • Fischbach, M.A.1    Lin, H.2    Zhou, L.3    Yu, Y.4    Abergel, R.J.5    Liu, D.R.6
  • 79
    • 84931295496 scopus 로고    scopus 로고
    • Update on fecal microbiota transplantation 2015: Indications, methodologies, mechanisms, and outlook
    • Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 2015; 149: 223–237.
    • (2015) Gastroenterology , vol.149 , pp. 223-237
    • Kelly, C.R.1    Kahn, S.2    Kashyap, P.3    Laine, L.4    Rubin, D.5    Atreja, A.6
  • 81
    • 84874672692 scopus 로고    scopus 로고
    • Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization
    • Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 2013; 81: 965–973.
    • (2013) Infect Immun , vol.81 , pp. 965-973
    • Ubeda, C.1    Bucci, V.2    Caballero, S.3    Djukovic, A.4    Toussaint, N.C.5    Equinda, M.6
  • 82
    • 84978327773 scopus 로고    scopus 로고
    • Loss of vancomycin-resistant Enterococcus fecal dominance in an organ transplant patient with Clostridium difficile colitis after fecal microbiota transplant
    • Stripling J, Kumar R, Baddley JW, Nellore A, Dixon P, Howard D et al. Loss of vancomycin-resistant Enterococcus fecal dominance in an organ transplant patient with Clostridium difficile colitis after fecal microbiota transplant. Open Forum Infect Dis 2015; 2: ofv078.
    • (2015) Open Forum Infect Dis , vol.2 , pp. ofv078
    • Stripling, J.1    Kumar, R.2    Baddley, J.W.3    Nellore, A.4    Dixon, P.5    Howard, D.6
  • 83
    • 84858376593 scopus 로고    scopus 로고
    • The impact of the gut microbiota on human health: An integrative view
    • Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148: 1258–1270.
    • (2012) Cell , vol.148 , pp. 1258-1270
    • Clemente, J.C.1    Ursell, L.K.2    Parfrey, L.W.3    Knight, R.4
  • 84
    • 0024312284 scopus 로고
    • Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients
    • Tvede M, Rask-Madsen J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1989; 1: 1156–1160.
    • (1989) Lancet , vol.1 , pp. 1156-1160
    • Tvede, M.1    Rask-Madsen, J.2
  • 85
    • 84868158515 scopus 로고    scopus 로고
    • Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice
    • Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 2012; 8: e1002995.
    • (2012) Plos Pathog , vol.8
    • Lawley, T.D.1    Clare, S.2    Walker, A.W.3    Stares, M.D.4    Connor, T.R.5    Raisen, C.6
  • 86
    • 84880417771 scopus 로고    scopus 로고
    • Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron
    • Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 2013; 14: 26–37.
    • (2013) Cell Host Microbe , vol.14 , pp. 26-37
    • Deriu, E.1    Liu, J.Z.2    Pezeshki, M.3    Edwards, R.A.4    Ochoa, R.J.5    Contreras, H.6
  • 87
    • 79952773376 scopus 로고    scopus 로고
    • Effect of broad-and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon
    • Rea MC, Dobson A, O'Sullivan O, Crispie F, Fouhy F, Cotter PD et al. Effect of broad-and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci USA 2011; 108: 4639–4644.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 4639-4644
    • Rea, M.C.1    Dobson, A.2    O'sullivan, O.3    Crispie, F.4    Fouhy, F.5    Cotter, P.D.6
  • 88
    • 84959431760 scopus 로고    scopus 로고
    • TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus
    • Abt MC, Buffie CG, Sušac B, Becattini S, Carter RA, Leiner I et al. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci Transl Med 2016; 8: 327ra25–327ra25.
    • (2016) Sci Transl Med , vol.8 , pp. 327ra25-327ra25
    • Abt, M.C.1    Buffie, C.G.2    Sušac, B.3    Becattini, S.4    Carter, R.A.5    Leiner, I.6
  • 89
    • 75749133608 scopus 로고    scopus 로고
    • Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection
    • Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 2010; 201: 534–543.
    • (2010) J Infect Dis , vol.201 , pp. 534-543
    • Kinnebrew, M.A.1    Ubeda, C.2    Zenewicz, L.A.3    Smith, N.4    Flavell, R.A.5    Pamer, E.G.6
  • 90
    • 79953300500 scopus 로고    scopus 로고
    • Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis
    • Jarchum I, Liu M, Lipuma L, Pamer EG. Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect Immun 2011; 79: 1498–1503.
    • (2011) Infect Immun , vol.79 , pp. 1498-1503
    • Jarchum, I.1    Liu, M.2    Lipuma, L.3    Pamer, E.G.4
  • 91
    • 84994738020 scopus 로고    scopus 로고
    • Linking the human gut microbiome to inflammatory cytokine production capacity
    • Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 2016; 167: 1125–1136.
    • (2016) Cell , vol.167 , pp. 1125-1136
    • Schirmer, M.1    Smeekens, S.P.2    Vlamakis, H.3    Jaeger, M.4    Oosting, M.5    Franzosa, E.A.6
  • 92
    • 84981341034 scopus 로고    scopus 로고
    • The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota
    • Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1: 16131.
    • (2016) Nat Microbiol , vol.1
    • Lagkouvardos, I.1    Pukall, R.2    Abt, B.3    Foesel, B.U.4    Meier-Kolthoff, J.P.5    Kumar, N.6
  • 93
    • 84969704060 scopus 로고    scopus 로고
    • Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation
    • Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533: 543–546.
    • (2016) Nature , vol.533 , pp. 543-546
    • Browne, H.P.1    Forster, S.C.2    Anonye, B.O.3    Kumar, N.4    Neville, B.A.5    Stares, M.D.6
  • 94
    • 84994399678 scopus 로고    scopus 로고
    • Culture of previously uncultured members of the human gut microbiota by culturomics
    • Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016; 1: 1–8.
    • (2016) Nat Microbiol , vol.1 , pp. 1-8
    • Lagier, J.-C.1    Khelaifia, S.2    Alou, M.T.3    Ndongo, S.4    Dione, N.5    Hugon, P.6
  • 95
    • 84908079780 scopus 로고    scopus 로고
    • A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics
    • Donia MS, Cimermancic P, Schulze CJ, Brown LCW, Martin J, Mitreva M et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 2014; 158: 1402–1414.
    • (2014) Cell , vol.158 , pp. 1402-1414
    • Donia, M.S.1    Cimermancic, P.2    Schulze, C.J.3    Brown, L.C.W.4    Martin, J.5    Mitreva, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.