-
1
-
-
84898808700
-
Meta'omic analytic techniques for studying the intestinal microbiome
-
Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014; 146: 1437–1448.e1.
-
(2014)
Gastroenterology
, vol.146
, pp. 1437-1448
-
-
Morgan, X.C.1
Huttenhower, C.2
-
2
-
-
78649895980
-
Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
-
Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010; 120: 4332–4341.
-
(2010)
J Clin Invest
, vol.120
, pp. 4332-4341
-
-
Ubeda, C.1
Taur, Y.2
Jenq, R.R.3
Equinda, M.J.4
Son, T.5
Samstein, M.6
-
3
-
-
85014567629
-
Short-and long-term effects of oral vancomycin on the human intestinal microbiota
-
Isaac S, Scher JU, Djukovic A, Jiménez N, Littman DR, Abramson SB et al. Short-and long-term effects of oral vancomycin on the human intestinal microbiota. J Antimicrob Chemother 2016; 72: 128–136.
-
(2016)
J Antimicrob Chemother
, vol.72
, pp. 128-136
-
-
Isaac, S.1
Scher, J.U.2
Djukovic, A.3
Jiménez, N.4
Littman, D.R.5
Abramson, S.B.6
-
4
-
-
84925500413
-
Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
-
Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2014, 517: 205–208.
-
(2014)
Nature
, vol.517
, pp. 205-208
-
-
Buffie, C.G.1
Bucci, V.2
Stein, R.R.3
McKenney, P.T.4
Ling, L.5
Gobourne, A.6
-
5
-
-
84865286121
-
Antibiotics, microbiota, and immune defense
-
Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol 2012; 33: 459–466.
-
(2012)
Trends Immunol
, vol.33
, pp. 459-466
-
-
Ubeda, C.1
Pamer, E.G.2
-
6
-
-
84945964162
-
Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract
-
Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 2015; 526: 719–722.
-
(2015)
Nature
, vol.526
, pp. 719-722
-
-
Kommineni, S.1
Bretl, D.J.2
Lam, V.3
Chakraborty, R.4
Hayward, M.5
Simpson, P.6
-
7
-
-
84982710140
-
Human commensals producing a novel antibiotic impair pathogen colonization
-
Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016; 535: 511–516.
-
(2016)
Nature
, vol.535
, pp. 511-516
-
-
Zipperer, A.1
Konnerth, M.C.2
Laux, C.3
Berscheid, A.4
Janek, D.5
Weidenmaier, C.6
-
8
-
-
85007449667
-
Microcins mediate competition among Enterobacteriaceae in the inflamed gut
-
Sassone-Corsi M, Nuccio S-P, Liu H, Hernandez D, Vu CT, Takahashi AA et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 2016; 540: 280–283.
-
(2016)
Nature
, vol.540
, pp. 280-283
-
-
Sassone-Corsi, M.1
Nuccio, S.-P.2
Liu, H.3
Hernandez, D.4
Vu, C.T.5
Takahashi, A.A.6
-
9
-
-
84969903059
-
Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection
-
Quereda JJ, Dussurget O, Nahori M-A, Ghozlane A, Volant S, Dillies M-A et al. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc Natl Acad Sci USA 2016; 113: 5706–5711.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 5706-5711
-
-
Quereda, J.J.1
Dussurget, O.2
Nahori, M.-A.3
Ghozlane, A.4
Volant, S.5
Dillies, M.-A.6
-
10
-
-
0036178027
-
Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7
-
Shin R, Suzuki M, Morishita Y. Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. J Med Microbiol 2002; 51: 201–206.
-
(2002)
J Med Microbiol
, vol.51
, pp. 201-206
-
-
Shin, R.1
Suzuki, M.2
Morishita, Y.3
-
11
-
-
84911468185
-
Members of the human gut microbiota involved in recovery from Vibrio cholerae infection
-
Hsiao A, Ahmed AMS, Subramanian S, Griffin NW, Drewry LL, Petri WA et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014; 515: 423–426.
-
(2014)
Nature
, vol.515
, pp. 423-426
-
-
Hsiao, A.1
Ahmed, A.M.S.2
Subramanian, S.3
Griffin, N.W.4
Drewry, L.L.5
Petri, W.A.6
-
12
-
-
0036885883
-
Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA
-
Lawhon SD, Maurer R, Suyemoto M, Altier C. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 2002; 46: 1451–1464.
-
(2002)
Mol Microbiol
, vol.46
, pp. 1451-1464
-
-
Lawhon, S.D.1
Maurer, R.2
Suyemoto, M.3
Altier, C.4
-
13
-
-
33644867989
-
Butyrate specifically down-regulates Salmonella pathogenicity Island 1 gene expression
-
Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Hautefort I, Thompson A et al. Butyrate specifically down-regulates Salmonella pathogenicity Island 1 gene expression. Appl Environ Microbiol 2006; 72: 946–949.
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 946-949
-
-
Gantois, I.1
Ducatelle, R.2
Pasmans, F.3
Haesebrouck, F.4
Hautefort, I.5
Thompson, A.6
-
14
-
-
84892894991
-
Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection
-
Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 2014; 5: 1–10.
-
(2014)
Nat Commun
, vol.5
, pp. 1-10
-
-
Theriot, C.M.1
Koenigsknecht, M.J.2
Carlson, P.E.3
Hatton, G.E.4
Nelson, A.M.5
Li, B.6
-
15
-
-
84872517425
-
Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine
-
Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE 2013; 8: e53957.
-
(2013)
Plos ONE
, vol.8
-
-
Maltby, R.1
Leatham-Jensen, M.P.2
Gibson, T.3
Cohen, P.S.4
Conway, T.5
-
16
-
-
84861972274
-
Regulated virulence controls the ability of a pathogen to compete with the gut microbiota
-
Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012; 336: 1325–1329.
-
(2012)
Science
, vol.336
, pp. 1325-1329
-
-
Kamada, N.1
Kim, Y.G.2
Sham, H.P.3
Vallance, B.A.4
Puente, J.L.5
Martens, E.C.6
-
17
-
-
84885573828
-
Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
-
Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013; 502: 96–99.
-
(2013)
Nature
, vol.502
, pp. 96-99
-
-
Ng, K.M.1
Ferreyra, J.A.2
Higginbottom, S.K.3
Lynch, J.B.4
Kashyap, P.C.5
Gopinath, S.6
-
18
-
-
84920621547
-
Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance
-
Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 2014; 16: 770–777.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 770-777
-
-
Ferreyra, J.A.1
Wu, K.J.2
Hryckowian, A.J.3
Bouley, D.M.4
Weimer, B.C.5
Sonnenburg, J.L.6
-
19
-
-
84870501494
-
Fucose sensing regulates bacterial intestinal colonization
-
Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG et al. Fucose sensing regulates bacterial intestinal colonization. Nature 2012; 492: 113–117.
-
(2012)
Nature
, vol.492
, pp. 113-117
-
-
Pacheco, A.R.1
Curtis, M.M.2
Ritchie, J.M.3
Munera, D.4
Waldor, M.K.5
Moreira, C.G.6
-
20
-
-
0031895930
-
The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69
-
Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, Lai LC et al. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 1998; 28: 1–4.
-
(1998)
Mol Microbiol
, vol.28
, pp. 1-4
-
-
Elliott, S.J.1
Wainwright, L.A.2
McDaniel, T.K.3
Jarvis, K.G.4
Deng, Y.K.5
Lai, L.C.6
-
21
-
-
84896851032
-
Intestinal epithelial cells: Regulators of barrier function and immune homeostasis
-
Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014; 14: 141–153.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 141-153
-
-
Peterson, L.W.1
Artis, D.2
-
22
-
-
77953610970
-
Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa
-
Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010; 6: e1000902.
-
(2010)
Plos Pathog
, vol.6
-
-
Bergstrom, K.S.B.1
Kissoon-Singh, V.2
Gibson, D.L.3
Ma, C.4
Montero, M.5
Sham, H.P.6
-
23
-
-
84947425582
-
Normalization of host intestinal mucus layers requires long-term microbial colonization
-
Johansson MEV, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodríguez-Piñeiro AM et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 2015; 18: 582–592.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 582-592
-
-
Johansson, M.E.V.1
Jakobsson, H.E.2
Holmén-Larsson, J.3
Schütte, A.4
Ermund, A.5
Rodríguez-Piñeiro, A.M.6
-
24
-
-
84864886608
-
Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides
-
Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol 2012; 5: 501–512.
-
(2012)
Mucosal Immunol
, vol.5
, pp. 501-512
-
-
Frantz, A.L.1
Rogier, E.W.2
Weber, C.R.3
Shen, L.4
Cohen, D.A.5
Fenton, L.A.6
-
25
-
-
34547762705
-
MyD88-mediated signals induce the bactericidal lectin RegIII and protect mice against intestinal Listeria monocytogenes infection
-
Brandl K, Plitas G, Schnabl B, Dematteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIII and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 2007; 204: 1891–1900.
-
(2007)
J Exp Med
, vol.204
, pp. 1891-1900
-
-
Brandl, K.1
Plitas, G.2
Schnabl, B.3
Dematteo, R.P.4
Pamer, E.G.5
-
26
-
-
58549111588
-
Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
-
Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 2008; 105: 20858–20863.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 20858-20863
-
-
Vaishnava, S.1
Behrendt, C.L.2
Ismail, A.S.3
Eckmann, L.4
Hooper, L.V.5
-
27
-
-
13244292161
-
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
-
Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Núñez G et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 307: 731–734.
-
(2005)
Science
, vol.307
, pp. 731-734
-
-
Kobayashi, K.S.1
Chamaillard, M.2
Ogura, Y.3
Henegariu, O.4
Inohara, N.5
Núñez, G.6
-
28
-
-
80054122238
-
The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334: 255–258.
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
Yamamoto, M.2
Severson, K.M.3
Ruhn, K.A.4
Yu, X.5
Koren, O.6
-
29
-
-
33748039462
-
Symbiotic bacteria direct expression of an intestinal bactericidal lectin
-
Cash HL. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006; 313: 1126–1130.
-
(2006)
Science
, vol.313
, pp. 1126-1130
-
-
Cash, H.L.1
-
30
-
-
53649098280
-
Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
-
Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008; 455: 804–807.
-
(2008)
Nature
, vol.455
, pp. 804-807
-
-
Brandl, K.1
Plitas, G.2
Mihu, C.N.3
Ubeda, C.4
Jia, T.5
Fleisher, M.6
-
31
-
-
84902590860
-
REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum
-
Loonen LMP, Stolte EH, Jaklofsky MTJ, Meijerink M, Dekker J, Van Baarlen P et al. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol 2014; 7: 939–947.
-
(2014)
Mucosal Immunol
, vol.7
, pp. 939-947
-
-
Loonen, L.M.P.1
Stolte, E.H.2
Jaklofsky, M.T.J.3
Meijerink, M.4
Dekker, J.5
van Baarlen, P.6
-
32
-
-
84936891126
-
Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization
-
Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med 2015; 21: 808–814.
-
(2015)
Nat Med
, vol.21
, pp. 808-814
-
-
Fan, D.1
Coughlin, L.A.2
Neubauer, M.M.3
Kim, J.4
Kim, M.S.5
Zhan, X.6
-
33
-
-
79251584066
-
Bifidobacteria can protect from enteropathogenic infection through production of acetate
-
Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011; 469: 543–547.
-
(2011)
Nature
, vol.469
, pp. 543-547
-
-
Fukuda, S.1
Toh, H.2
Hase, K.3
Oshima, K.4
Nakanishi, Y.5
Yoshimura, K.6
-
34
-
-
84990967215
-
Haemolytic uraemic syndrome
-
Karpman D, Loos S, Tati R, Arvidsson I. Haemolytic uraemic syndrome. J Intern Med 2016, 281: 123–148.
-
(2016)
J Intern Med
, vol.281
, pp. 123-148
-
-
Karpman, D.1
Loos, S.2
Tati, R.3
Arvidsson, I.4
-
35
-
-
84954074277
-
Innate lymphoid cells in intestinal immunity and inflammation
-
Bostick JW, Zhou L. Innate lymphoid cells in intestinal immunity and inflammation. Cell Mol Life Sci 2015; 73: 237–252.
-
(2015)
Cell Mol Life Sci
, vol.73
, pp. 237-252
-
-
Bostick, J.W.1
Zhou, L.2
-
36
-
-
57849117363
-
RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
-
Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009; 10: 83–91.
-
(2009)
Nat Immunol
, vol.10
, pp. 83-91
-
-
Sanos, S.L.1
Bui, V.L.2
Mortha, A.3
Oberle, K.4
Heners, C.5
Johner, C.6
-
37
-
-
84920929686
-
An enteric virus can replace the beneficial function of commensal bacteria
-
Kernbauer E, Ding Y, Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 2014; 516: 94–98.
-
(2014)
Nature
, vol.516
, pp. 94-98
-
-
Kernbauer, E.1
Ding, Y.2
Cadwell, K.3
-
38
-
-
84876780238
-
Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive I FN-γ-producing cells
-
Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive I FN-γ-producing cells. Immunity 2013; 38: 769–781.
-
(2013)
Immunity
, vol.38
, pp. 769-781
-
-
Fuchs, A.1
Vermi, W.2
Lee, J.S.3
Lonardi, S.4
Gilfillan, S.5
Newberry, R.D.6
-
39
-
-
84855917402
-
AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch
-
Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2011; 13: 144–151.
-
(2011)
Nat Immunol
, vol.13
, pp. 144-151
-
-
Lee, J.S.1
Cella, M.2
McDonald, K.G.3
Garlanda, C.4
Kennedy, G.D.5
Nukaya, M.6
-
40
-
-
84983780960
-
The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome
-
Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 2016; 166: 1231–1246.e13.
-
(2016)
Cell
, vol.166
, pp. 1231-1246
-
-
Gury-Benari, M.1
Thaiss, C.A.2
Serafini, N.3
Winter, D.R.4
Giladi, A.5
Lara-Astiaso, D.6
-
41
-
-
84943170553
-
Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection
-
Abt MC, Lewis BB, Caballero S, Xiong H, Carter RA, Sušac B et al. Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe 2015; 18: 27–37.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 27-37
-
-
Abt, M.C.1
Lewis, B.B.2
Caballero, S.3
Xiong, H.4
Carter, R.A.5
Sušac, B.6
-
42
-
-
84955195285
-
Complementarity and redundancy of IL-22-producing innate lymphoid cells
-
Rankin LC, Girard-Madoux MJH, Seillet C, Mielke LA, Kerdiles Y, Fenis A et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 2015; 17: 179–186.
-
(2015)
Nat Immunol
, vol.17
, pp. 179-186
-
-
Rankin, L.C.1
Girard-Madoux, M.J.H.2
Seillet, C.3
Mielke, L.A.4
Kerdiles, Y.5
Fenis, A.6
-
43
-
-
40049083827
-
Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
-
Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289.
-
(2008)
Nat Med
, vol.14
, pp. 282-289
-
-
Zheng, Y.1
Valdez, P.A.2
Danilenko, D.M.3
Hu, Y.4
Sa, S.M.5
Gong, Q.6
-
44
-
-
77951817855
-
Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
-
Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010; 464: 1367–1370.
-
(2010)
Nature
, vol.464
, pp. 1367-1370
-
-
Neill, D.R.1
Wong, S.H.2
Bellosi, A.3
Flynn, R.J.4
Daly, M.5
Langford, T.K.A.6
-
45
-
-
84936892270
-
Innate lymphoid cells in the initiation, regulation and resolution of inflammation
-
Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 2015; 21: 698–708.
-
(2015)
Nat Med
, vol.21
, pp. 698-708
-
-
Sonnenberg, G.F.1
Artis, D.2
-
46
-
-
84882664672
-
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
-
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013; 39: 372–385.
-
(2013)
Immunity
, vol.39
, pp. 372-385
-
-
Zelante, T.1
Iannitti, R.G.2
Cunha, C.3
de Luca, A.4
Giovannini, G.5
Pieraccini, G.6
-
47
-
-
84856237141
-
The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells
-
Qiu J, Heller JJ, Guo X, Chen Z-ME, Fish K, Fu Y-X et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 2012; 36: 92–104.
-
(2012)
Immunity
, vol.36
, pp. 92-104
-
-
Qiu, J.1
Heller, J.J.2
Guo, X.3
Chen, Z.-M.4
Fish, K.5
Fu, Y.-X.6
-
48
-
-
80054041992
-
An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor
-
Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011; 478: 197–203.
-
(2011)
Nature
, vol.478
, pp. 197-203
-
-
Opitz, C.A.1
Litzenburger, U.M.2
Sahm, F.3
Ott, M.4
Tritschler, I.5
Trump, S.6
-
49
-
-
84896064402
-
Gut microbiota promote hematopoiesis to control bacterial infection
-
Khosravi A, Yáñez A, Price JG, Chow A, Merad M, Goodridge HS et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014; 15: 374–381.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 374-381
-
-
Khosravi, A.1
Yáñez, A.2
Price, J.G.3
Chow, A.4
Merad, M.5
Goodridge, H.S.6
-
50
-
-
84866158239
-
Protective role of commensals against Clostridium difficile infection via an IL-1-mediated positive-feedback loop
-
Hasegawa M, Kamada N, Jiao Y, Liu MZ, Nùñez G, Inohara N. Protective role of commensals against Clostridium difficile infection via an IL-1-mediated positive-feedback loop. J Immunol 2012; 189: 3085–3091.
-
(2012)
J Immunol
, vol.189
, pp. 3085-3091
-
-
Hasegawa, M.1
Kamada, N.2
Jiao, Y.3
Liu, M.Z.4
Nùñez, G.5
Inohara, N.6
-
51
-
-
76249120134
-
Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
-
Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16: 228–231.
-
(2010)
Nat Med
, vol.16
, pp. 228-231
-
-
Clarke, T.B.1
Davis, K.M.2
Lysenko, E.S.3
Zhou, A.Y.4
Yu, Y.5
Weiser, J.N.6
-
52
-
-
84880285461
-
Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection
-
Grainger JR, Wohlfert EA, Fuss IJ, Bouladoux N, Askenase MH, Legrand F et al. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat Med 2013; 19: 713–721.
-
(2013)
Nat Med
, vol.19
, pp. 713-721
-
-
Grainger, J.R.1
Wohlfert, E.A.2
Fuss, I.J.3
Bouladoux, N.4
Askenase, M.H.5
Legrand, F.6
-
53
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485–498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
Atarashi, K.2
Manel, N.3
Brodie, E.L.4
Shima, T.5
Karaoz, U.6
-
54
-
-
22144490199
-
An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
-
Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122: 107–118.
-
(2005)
Cell
, vol.122
, pp. 107-118
-
-
Mazmanian, S.K.1
Liu, C.H.2
Tzianabos, A.O.3
Kasper, D.L.4
-
55
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331: 337–341.
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
Tanoue, T.2
Shima, T.3
Imaoka, A.4
Kuwahara, T.5
Momose, Y.6
-
56
-
-
84978431877
-
The microbiota in adaptive immune homeostasis and disease
-
Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016; 535: 75–84.
-
(2016)
Nature
, vol.535
, pp. 75-84
-
-
Honda, K.1
Littman, D.R.2
-
57
-
-
84867908677
-
Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis
-
Cao AT, Yao S, Gong B, Elson CO, Cong Y. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol 2012; 189: 4666–4673.
-
(2012)
J Immunol
, vol.189
, pp. 4666-4673
-
-
Cao, A.T.1
Yao, S.2
Gong, B.3
Elson, C.O.4
Cong, Y.5
-
58
-
-
84943638660
-
An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses
-
Sano T, Huang W, Hall JA, Yang Y, Chen A, Gavzy SJ et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 2015; 163: 381–393.
-
(2015)
Cell
, vol.163
, pp. 381-393
-
-
Sano, T.1
Huang, W.2
Hall, J.A.3
Yang, Y.4
Chen, A.5
Gavzy, S.J.6
-
59
-
-
84943639694
-
Th17 cell induction by adhesion of microbes to intestinal epithelial cells
-
Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015; 163: 367–380.
-
(2015)
Cell
, vol.163
, pp. 367-380
-
-
Atarashi, K.1
Tanoue, T.2
Ando, M.3
Kamada, N.4
Nagano, Y.5
Narushima, S.6
-
60
-
-
84879254845
-
GPR15-mediated homing controls immune homeostasis in the large intestine mucosa
-
Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW, Ota M et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 2013; 340: 1456–1459.
-
(2013)
Science
, vol.340
, pp. 1456-1459
-
-
Kim, S.V.1
Xiang, W.V.2
Kwak, C.3
Yang, Y.4
Lin, X.W.5
Ota, M.6
-
61
-
-
84881477044
-
induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al. induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500: 232–236.
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
Tanoue, T.2
Oshima, K.3
Suda, W.4
Nagano, Y.5
Nishikawa, H.6
-
62
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
Michaud, M.4
Gallini, C.A.5
Bohlooly, -Y.M.6
-
63
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446–450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
Endo, T.A.4
Nakato, G.5
Takahashi, D.6
-
64
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451–455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
Dikiy, S.4
van der Veeken, J.5
Deroos, P.6
-
65
-
-
84897053496
-
Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
-
Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014; 343: 1249288–1249288.
-
(2014)
Science
, vol.343
, pp. 1249288-1249288
-
-
Mortha, A.1
Chudnovskiy, A.2
Hashimoto, D.3
Bogunovic, M.4
Spencer, S.P.5
Belkaid, Y.6
-
66
-
-
44649193919
-
The biology of intestinal immunoglobulin A responses
-
Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity 2008; 28: 740–750.
-
(2008)
Immunity
, vol.28
, pp. 740-750
-
-
Cerutti, A.1
Rescigno, M.2
-
67
-
-
0018092512
-
Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin
-
Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun 1978; 21: 532–539.
-
(1978)
Infect Immun
, vol.21
, pp. 532-539
-
-
Moreau, M.C.1
Ducluzeau, R.2
Guy-Grand, D.3
Muller, M.C.4
-
68
-
-
84979735744
-
Gut microbial metabolites fuel host antibody responses
-
Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 2016; 20: 202–214.
-
(2016)
Cell Host Microbe
, vol.20
, pp. 202-214
-
-
Kim, M.1
Qie, Y.2
Park, J.3
Kim, C.H.4
-
69
-
-
84960388607
-
Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens
-
Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 2016; 44: 647–658.
-
(2016)
Immunity
, vol.44
, pp. 647-658
-
-
Zeng, M.Y.1
Cisalpino, D.2
Varadarajan, S.3
Hellman, J.4
Warren, H.S.5
Cascalho, M.6
-
70
-
-
35649026345
-
Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota
-
Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. Plos Biol 2007; 5: 2177–2189.
-
(2007)
Plos Biol
, vol.5
, pp. 2177-2189
-
-
Stecher, B.1
Robbiani, R.2
Walker, A.W.3
Westendorf, A.M.4
Barthel, M.5
Kremer, M.6
-
71
-
-
0032718594
-
Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa
-
Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest 1999; 104: 1107–1114.
-
(1999)
J Clin Invest
, vol.104
, pp. 1107-1114
-
-
Levitt, M.D.1
Furne, J.2
Springfield, J.3
Suarez, F.4
Demaster, E.5
-
72
-
-
77957157893
-
Gut inflammation provides a respiratory electron acceptor for Salmonella
-
Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010; 467: 426–429.
-
(2010)
Nature
, vol.467
, pp. 426-429
-
-
Winter, S.E.1
Thiennimitr, P.2
Winter, M.G.3
Butler, B.P.4
Huseby, D.L.5
Crawford, R.W.6
-
73
-
-
80054806900
-
Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota
-
Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, Huseby DL et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci USA 2011; 108: 17480–17485.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 17480-17485
-
-
Thiennimitr, P.1
Winter, S.E.2
Winter, M.G.3
Xavier, M.N.4
Tolstikov, V.5
Huseby, D.L.6
-
74
-
-
34547673497
-
Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics
-
Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6: 662–680.
-
(2007)
Nat Rev Drug Discov
, vol.6
, pp. 662-680
-
-
Szabó, C.1
Ischiropoulos, H.2
Radi, R.3
-
75
-
-
84873513423
-
Host-derived nitrate boosts growth of E. coli in the inflamed gut
-
Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013; 339: 708–711.
-
(2013)
Science
, vol.339
, pp. 708-711
-
-
Winter, S.E.1
Winter, M.G.2
Xavier, M.N.3
Thiennimitr, P.4
Poon, V.5
Keestra, A.M.6
-
76
-
-
65549099573
-
Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine
-
Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio S-P, Paixao TA et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 2009; 5: 476–486.
-
(2009)
Cell Host Microbe
, vol.5
, pp. 476-486
-
-
Raffatellu, M.1
George, M.D.2
Akiyama, Y.3
Hornsby, M.J.4
Nuccio, S.-P.5
Paixao, T.A.6
-
77
-
-
84894055913
-
The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria
-
Behnsen J, Jellbauer S, Wong CP, Edwards RA, George MD, Ouyang W et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 2014; 40: 262–273.
-
(2014)
Immunity
, vol.40
, pp. 262-273
-
-
Behnsen, J.1
Jellbauer, S.2
Wong, C.P.3
Edwards, R.A.4
George, M.D.5
Ouyang, W.6
-
78
-
-
33750795321
-
The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2
-
Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 2006; 103: 16502–16507.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 16502-16507
-
-
Fischbach, M.A.1
Lin, H.2
Zhou, L.3
Yu, Y.4
Abergel, R.J.5
Liu, D.R.6
-
79
-
-
84931295496
-
Update on fecal microbiota transplantation 2015: Indications, methodologies, mechanisms, and outlook
-
Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 2015; 149: 223–237.
-
(2015)
Gastroenterology
, vol.149
, pp. 223-237
-
-
Kelly, C.R.1
Kahn, S.2
Kashyap, P.3
Laine, L.4
Rubin, D.5
Atreja, A.6
-
80
-
-
84873019302
-
Duodenal infusion of donor feces for recurrent Clostridium difficile
-
van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368: 407–415.
-
(2013)
N Engl J Med
, vol.368
, pp. 407-415
-
-
van Nood, E.1
Vrieze, A.2
Nieuwdorp, M.3
Fuentes, S.4
Zoetendal, E.G.5
de Vos, W.M.6
-
81
-
-
84874672692
-
Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization
-
Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 2013; 81: 965–973.
-
(2013)
Infect Immun
, vol.81
, pp. 965-973
-
-
Ubeda, C.1
Bucci, V.2
Caballero, S.3
Djukovic, A.4
Toussaint, N.C.5
Equinda, M.6
-
82
-
-
84978327773
-
Loss of vancomycin-resistant Enterococcus fecal dominance in an organ transplant patient with Clostridium difficile colitis after fecal microbiota transplant
-
Stripling J, Kumar R, Baddley JW, Nellore A, Dixon P, Howard D et al. Loss of vancomycin-resistant Enterococcus fecal dominance in an organ transplant patient with Clostridium difficile colitis after fecal microbiota transplant. Open Forum Infect Dis 2015; 2: ofv078.
-
(2015)
Open Forum Infect Dis
, vol.2
, pp. ofv078
-
-
Stripling, J.1
Kumar, R.2
Baddley, J.W.3
Nellore, A.4
Dixon, P.5
Howard, D.6
-
83
-
-
84858376593
-
The impact of the gut microbiota on human health: An integrative view
-
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148: 1258–1270.
-
(2012)
Cell
, vol.148
, pp. 1258-1270
-
-
Clemente, J.C.1
Ursell, L.K.2
Parfrey, L.W.3
Knight, R.4
-
84
-
-
0024312284
-
Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients
-
Tvede M, Rask-Madsen J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1989; 1: 1156–1160.
-
(1989)
Lancet
, vol.1
, pp. 1156-1160
-
-
Tvede, M.1
Rask-Madsen, J.2
-
85
-
-
84868158515
-
Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice
-
Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 2012; 8: e1002995.
-
(2012)
Plos Pathog
, vol.8
-
-
Lawley, T.D.1
Clare, S.2
Walker, A.W.3
Stares, M.D.4
Connor, T.R.5
Raisen, C.6
-
86
-
-
84880417771
-
Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron
-
Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 2013; 14: 26–37.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 26-37
-
-
Deriu, E.1
Liu, J.Z.2
Pezeshki, M.3
Edwards, R.A.4
Ochoa, R.J.5
Contreras, H.6
-
87
-
-
79952773376
-
Effect of broad-and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon
-
Rea MC, Dobson A, O'Sullivan O, Crispie F, Fouhy F, Cotter PD et al. Effect of broad-and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci USA 2011; 108: 4639–4644.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 4639-4644
-
-
Rea, M.C.1
Dobson, A.2
O'sullivan, O.3
Crispie, F.4
Fouhy, F.5
Cotter, P.D.6
-
88
-
-
84959431760
-
TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus
-
Abt MC, Buffie CG, Sušac B, Becattini S, Carter RA, Leiner I et al. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci Transl Med 2016; 8: 327ra25–327ra25.
-
(2016)
Sci Transl Med
, vol.8
, pp. 327ra25-327ra25
-
-
Abt, M.C.1
Buffie, C.G.2
Sušac, B.3
Becattini, S.4
Carter, R.A.5
Leiner, I.6
-
89
-
-
75749133608
-
Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection
-
Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 2010; 201: 534–543.
-
(2010)
J Infect Dis
, vol.201
, pp. 534-543
-
-
Kinnebrew, M.A.1
Ubeda, C.2
Zenewicz, L.A.3
Smith, N.4
Flavell, R.A.5
Pamer, E.G.6
-
90
-
-
79953300500
-
Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis
-
Jarchum I, Liu M, Lipuma L, Pamer EG. Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect Immun 2011; 79: 1498–1503.
-
(2011)
Infect Immun
, vol.79
, pp. 1498-1503
-
-
Jarchum, I.1
Liu, M.2
Lipuma, L.3
Pamer, E.G.4
-
91
-
-
84994738020
-
Linking the human gut microbiome to inflammatory cytokine production capacity
-
Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 2016; 167: 1125–1136.
-
(2016)
Cell
, vol.167
, pp. 1125-1136
-
-
Schirmer, M.1
Smeekens, S.P.2
Vlamakis, H.3
Jaeger, M.4
Oosting, M.5
Franzosa, E.A.6
-
92
-
-
84981341034
-
The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota
-
Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1: 16131.
-
(2016)
Nat Microbiol
, vol.1
-
-
Lagkouvardos, I.1
Pukall, R.2
Abt, B.3
Foesel, B.U.4
Meier-Kolthoff, J.P.5
Kumar, N.6
-
93
-
-
84969704060
-
Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation
-
Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533: 543–546.
-
(2016)
Nature
, vol.533
, pp. 543-546
-
-
Browne, H.P.1
Forster, S.C.2
Anonye, B.O.3
Kumar, N.4
Neville, B.A.5
Stares, M.D.6
-
94
-
-
84994399678
-
Culture of previously uncultured members of the human gut microbiota by culturomics
-
Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016; 1: 1–8.
-
(2016)
Nat Microbiol
, vol.1
, pp. 1-8
-
-
Lagier, J.-C.1
Khelaifia, S.2
Alou, M.T.3
Ndongo, S.4
Dione, N.5
Hugon, P.6
-
95
-
-
84908079780
-
A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics
-
Donia MS, Cimermancic P, Schulze CJ, Brown LCW, Martin J, Mitreva M et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 2014; 158: 1402–1414.
-
(2014)
Cell
, vol.158
, pp. 1402-1414
-
-
Donia, M.S.1
Cimermancic, P.2
Schulze, C.J.3
Brown, L.C.W.4
Martin, J.5
Mitreva, M.6
|