-
2
-
-
1642451400
-
-
World Health Organization (WHO)
-
World Health Organization (WHO), "The importance of pharmacovigilance," 2002, pp. 1-52.
-
(2002)
The Importance of Pharmacovigilance
, pp. 1-52
-
-
-
3
-
-
33646744337
-
Under-reporting of adverse drug reactions
-
L. Hazell and S. A. Shakir, "Under-reporting of adverse drug reactions," Drug Safety, vol. 29, no. 5, pp. 385-396, 2006.
-
(2006)
Drug Safety
, vol.29
, Issue.5
, pp. 385-396
-
-
Hazell, L.1
Shakir, S.A.2
-
4
-
-
84949514782
-
Identifying adverse drug event information in clinical notes with distributional semantic representations of context
-
A. Henriksson, M. Kvist, H. Dalianis, and M. Duneld, "Identifying adverse drug event information in clinical notes with distributional semantic representations of context," J. Biomed. Informat., vol. 57, pp. 333-349, 2015.
-
(2015)
J. Biomed. Informat.
, vol.57
, pp. 333-349
-
-
Henriksson, A.1
Kvist, M.2
Dalianis, H.3
Duneld, M.4
-
9
-
-
84924285421
-
Portable automatic text classification for adverse drug reaction detection via multi-corpus training
-
A. Sarker and G. Gonzalez, "Portable automatic text classification for adverse drug reaction detection via multi-corpus training," J. Biomed. Informat., vol. 53, pp. 196-207, 2015.
-
(2015)
J. Biomed. Informat.
, vol.53
, pp. 196-207
-
-
Sarker, A.1
Gonzalez, G.2
-
10
-
-
85072153712
-
Adverse drug event classification of health records using dictionary based pre-processing and machine learning
-
S. Friedrich and H. Dalianis, "Adverse drug event classification of health records using dictionary based pre-processing and machine learning," in Proc. 6th Int. Workshop Health Text Mining Inf. Anal., 2015, pp. 121-130.
-
(2015)
Proc. 6th Int. Workshop Health Text Mining Inf. Anal.
, pp. 121-130
-
-
Friedrich, S.1
Dalianis, H.2
-
11
-
-
85120076596
-
Applying deep learning on electronic health records in swedish to predict healthcare-associated infections
-
O. Jacobson and H. Dalianis, "Applying deep learning on electronic health records in swedish to predict healthcare-associated infections," in Proc. 15th Workshop Biomed. Natural Language Process., 2016, pp. 191-195.
-
(2016)
Proc. 15th Workshop Biomed. Natural Language Process.
, pp. 191-195
-
-
Jacobson, O.1
Dalianis, H.2
-
13
-
-
84959905696
-
Improved relation extraction with feature-rich compositional embedding models
-
M. R. Gormley, M. Yu, and M. Dredze, "Improved relation extraction with feature-rich compositional embedding models," in Proc. Conf. Empirical Methods Natural Language Process., 2015, pp. 1774-1784.
-
(2015)
Proc. Conf. Empirical Methods Natural Language Process.
, pp. 1774-1784
-
-
Gormley, M.R.1
Yu, M.2
Dredze, M.3
-
15
-
-
85083951332
-
Efficient estimation of word representations in vector space
-
T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," in Proc. Workshop Int. Conf. Learn. Representations, 2013, pp. 1-12.
-
(2013)
Proc. Workshop Int. Conf. Learn. Representations
, pp. 1-12
-
-
Mikolov, T.1
Chen, K.2
Corrado, G.3
Dean, J.4
-
16
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality," in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 3111-3119.
-
(2013)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
17
-
-
84962421735
-
Modeling electronic health records in ensembles of semantic spaces for adverse drug event detection
-
A. Henriksson, J. Zhao, H. Boström, and H. Dalianis, "Modeling electronic health records in ensembles of semantic spaces for adverse drug event detection," in Proc. IEEE Int. Conf. Bioinformat. Biomed., 2015, pp. 343-350.
-
(2015)
Proc. IEEE Int. Conf. Bioinformat. Biomed.
, pp. 343-350
-
-
Henriksson, A.1
Zhao, J.2
Boström, H.3
Dalianis, H.4
-
18
-
-
84978923841
-
Ensembles of randomized trees using diverse distributed representations of clinical events
-
A. Henriksson, J. Zhao, H. Dalianis, and H. Boström, "Ensembles of randomized trees using diverse distributed representations of clinical events," BMC Med. Informat. Decision Making, vol. 16, no. 2, pp. 85-95, 2016.
-
(2016)
BMC Med. Informat. Decision Making
, vol.16
, Issue.2
, pp. 85-95
-
-
Henriksson, A.1
Zhao, J.2
Dalianis, H.3
Boström, H.4
-
22
-
-
85039449540
-
Adverse drug reaction classification with deep neural networks
-
T. Huynh, Y. He, A. Willis, and S. Rüger, "Adverse drug reaction classification with deep neural networks," in Proc. 26th Int. Conf. Comput. Linguistics: Tech. Papers, 2016, pp. 877-887.
-
(2016)
Proc. 26th Int. Conf. Comput. Linguistics: Tech. Papers
, pp. 877-887
-
-
Huynh, T.1
He, Y.2
Willis, A.3
Rüger, S.4
-
23
-
-
85016566838
-
A languageindependent neural network for event detection
-
X. Feng, L. Huang, D. Tang, H. Ji, B. Qin, and T. Liu, "A languageindependent neural network for event detection," in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics (Volume 2: Short Papers), 2016, pp. 66-71.
-
(2016)
Proc. 54th Annu. Meeting Assoc. Comput. Linguistics (Volume 2: Short Papers)
, pp. 66-71
-
-
Feng, X.1
Huang, L.2
Tang, D.3
Ji, H.4
Qin, B.5
Liu, T.6
-
25
-
-
85033609192
-
Neural networks for featureless named entity recognition in czech
-
J. Straková, M. Straka, and J. Hajič, "Neural networks for featureless named entity recognition in czech," in Proc. Int. Conf. Text, Speech, Dialogue, 2016, pp. 173-181.
-
(2016)
Proc. Int. Conf. Text, Speech, Dialogue
, pp. 173-181
-
-
Straková, J.1
Straka, M.2
Hajič, J.3
-
26
-
-
85039149015
-
Adverse drug extraction in twitter data using convolutional neural network
-
L. Akhtyamova, M. Alexandrov, and J. Cardiff, "Adverse drug extraction in twitter data using convolutional neural network," in Proc. 28th Int. Workshop Database Expert Syst. Appl., 2017, pp. 88-92.
-
(2017)
Proc. 28th Int. Workshop Database Expert Syst. Appl.
, pp. 88-92
-
-
Akhtyamova, L.1
Alexandrov, M.2
Cardiff, J.3
-
28
-
-
85016601538
-
A neural joint model for entity and relation extraction from biomedical text
-
F. Li, M. Zhang, G. Fu, and D. Ji, "A neural joint model for entity and relation extraction from biomedical text," BMC Bioinformatics, vol. 18, no. 1, pp. 1-11, 2017.
-
(2017)
BMC Bioinformatics
, vol.18
, Issue.1
, pp. 1-11
-
-
Li, F.1
Zhang, M.2
Fu, G.3
Ji, D.4
-
29
-
-
85023614102
-
Recurrent neural networks for classifying relations in clinical notes
-
Y. Luo, "Recurrent neural networks for classifying relations in clinical notes," J. Biomed. Informat., vol. 72, pp. 85-95, 2017.
-
(2017)
J. Biomed. Informat.
, vol.72
, pp. 85-95
-
-
Luo, Y.1
-
30
-
-
85008626797
-
Drug drug interaction extraction from biomedical literature using syntax convolutional neural network
-
Z. Zhao, Z. Yang, L. Luo, H. Lin, and J. Wang, "Drug drug interaction extraction from biomedical literature using syntax convolutional neural network," Bioinformatics, vol. 32, no. 22, pp. 3444-3453, 2016.
-
(2016)
Bioinformatics
, vol.32
, Issue.22
, pp. 3444-3453
-
-
Zhao, Z.1
Yang, Z.2
Luo, L.3
Lin, H.4
Wang, J.5
-
31
-
-
85032377041
-
Exploring convolutional neural networks for drugdrug interaction extraction
-
V. Surez-Paniagua, I. Segura-Bedmar, and P. Martinez, "Exploring convolutional neural networks for drugdrug interaction extraction," Database, vol. 2017, pp. 1-15, 2017.
-
(2017)
Database
, vol.2017
, pp. 1-15
-
-
Surez-Paniagua, V.1
Segura-Bedmar, I.2
Martinez, P.3
-
32
-
-
85052543403
-
Drug-drug interaction extraction from biomedical texts using long short-term memory network
-
S. K. Sahu and A. Anand, "Drug-drug interaction extraction from biomedical texts using long short-term memory network," J. Biomed. Informat., vol. 86, pp. 15-24, 2018.
-
(2018)
J. Biomed. Informat.
, vol.86
, pp. 15-24
-
-
Sahu, S.K.1
Anand, A.2
-
33
-
-
78649509581
-
Extraction of adverse drug effects from clinical records
-
E. Aramaki et al., "Extraction of adverse drug effects from clinical records," in Proc. MedInfo, 2010, pp. 739-743.
-
(2010)
Proc. MedInfo
, pp. 739-743
-
-
Aramaki, E.1
-
34
-
-
84863544591
-
Drug side effect extraction from clinical narratives of psychiatry and psychology patients
-
S. Sohn, J.-P. A. Kocher, C. G. Chute, and G. K. Savova, "Drug side effect extraction from clinical narratives of psychiatry and psychology patients," J. Am. Med. Inform. Assoc., vol. 18, no. Supplement-1, pp. 144-149, 2011.
-
(2011)
J. Am. Med. Inform. Assoc.
, vol.18
, pp. 144-149
-
-
Sohn, S.1
Kocher, J.-P.A.2
Chute, C.G.3
Savova, G.K.4
-
35
-
-
85045757048
-
Annotation of negation in the iula Spanish clinical record corpus
-
M. Marimon, J. Vivaldi, and N. Bel, "Annotation of negation in the iula spanish clinical record corpus," in Proc. Workshop Comput. Semantics Beyond Events Roles, 2017, pp. 43-52.
-
(2017)
Proc. Workshop Comput. Semantics beyond Events Roles
, pp. 43-52
-
-
Marimon, M.1
Vivaldi, J.2
Bel, N.3
-
36
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
37
-
-
84943751885
-
Classifying relations by ranking with convolutional neural networks
-
C. dos Santos, B. Xiang, and B. Zhou, "Classifying relations by ranking with convolutional neural networks," in Proc. 53rd Annu. Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lang. Process. (Volume 1: Long Papers), 2015, pp. 626-634.
-
(2015)
Proc. 53rd Annu. Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lang. Process. (Volume 1: Long Papers)
, pp. 626-634
-
-
Dos Santos, C.1
Xiang, B.2
Zhou, B.3
-
38
-
-
84943772427
-
A re-ranking model for dependency parser with recursive convolutional neural network
-
C. Zhu, X. Qiu, X. Chen, and X. Huang, "A re-ranking model for dependency parser with recursive convolutional neural network," in Proc. 53rd Annu. Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lang. Process. (Volume 1: Long Papers), 2015, pp. 1159-1168.
-
(2015)
Proc. 53rd Annu. Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lang. Process. (Volume 1: Long Papers)
, pp. 1159-1168
-
-
Zhu, C.1
Qiu, X.2
Chen, X.3
Huang, X.4
-
39
-
-
26444565569
-
Finding structure in time
-
J. L. Elman, "Finding structure in time," Cogn. Sci., vol. 14, no. 2, pp. 179-211, 1990.
-
(1990)
Cogn. Sci.
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
40
-
-
85001976188
-
A primer on neural network models for natural language processing
-
Y. Goldberg, "A primer on neural network models for natural language processing," J. Artif. Intell. Res., vol. 57, pp. 345-420, 2016.
-
(2016)
J. Artif. Intell. Res.
, vol.57
, pp. 345-420
-
-
Goldberg, Y.1
-
41
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
R. Pascanu, T. Mikolov, and Y. Bengio, "On the difficulty of training recurrent neural networks," in Proc. Int. Conf. Mach. Learn., 2013, pp. 1310-1318.
-
(2013)
Proc. Int. Conf. Mach. Learn.
, pp. 1310-1318
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
42
-
-
0031268931
-
Bidirectional recurrent neural networks
-
Nov.
-
M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, Nov. 1997.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.11
, pp. 2673-2681
-
-
Schuster, M.1
Paliwal, K.K.2
-
45
-
-
84867720412
-
-
arXiv preprint arXiv: 1207.0580
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," 2012, arXiv preprint arXiv:1207.0580.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
46
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. Int. Conf. Mach. Learning, 2015, pp. 448-456.
-
(2015)
Proc. Int. Conf. Mach. Learning
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
47
-
-
84938582207
-
On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions
-
M. Oronoz, K. Gojenola, A. Pérez, A. Díaz de Ilarraza, and A. Casillas, "On the creation of a clinical gold standard corpus in spanish: Mining adverse drug reactions," J. Biomed. Informat., vol. 56, pp. 318-332, 2015.
-
(2015)
J. Biomed. Informat.
, vol.56
, pp. 318-332
-
-
Oronoz, M.1
Gojenola, K.2
Pérez, A.3
De Díaz Ilarraza, A.4
Casillas, A.5
-
49
-
-
84961289992
-
Glove: Global vectors for word representation
-
J. Pennington, R. Socher, and C. Manning, "Glove: Global vectors for word representation," in Proc. Conf. EmpiricalMethods Natural Language Process., 2014, pp. 1532-1543.
-
(2014)
Proc. Conf. EmpiricalMethods Natural Language Process.
, pp. 1532-1543
-
-
Pennington, J.1
Socher, R.2
Manning, C.3
-
50
-
-
84893174149
-
Automatic annotation of medical records in Spanish with disease, drug and substance names
-
M. Oronoz, A. Casillas, K. Gojenola, and A. Pérez, "Automatic annotation of medical records in Spanish with disease, drug and substance names," in Proc. IberoamericanCongr. Pattern Recognit., 2013, vol. 8259, pp. 536-547.
-
(2013)
Proc. IberoamericanCongr. Pattern Recognit.
, vol.8259
, pp. 536-547
-
-
Oronoz, M.1
Casillas, A.2
Gojenola, K.3
Pérez, A.4
-
51
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests," Mach. Learning, vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Mach. Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
52
-
-
84977271358
-
Predictive modeling of structured electronic health records for adverse drug event detection
-
J. Zhao, A. Henriksson, L. Asker, and H. Boström, "Predictive modeling of structured electronic health records for adverse drug event detection," BMC Med. Informat. Decision Making, vol. 15, no. 4, pp. 1-15, 2015.
-
(2015)
BMC Med. Informat. Decision Making
, vol.15
, Issue.4
, pp. 1-15
-
-
Zhao, J.1
Henriksson, A.2
Asker, L.3
Boström, H.4
-
54
-
-
84872219638
-
Identification of adverse drug event assertive sentences in medical case reports
-
H. Gurulingappa, J. Fluck, M. Hofmann-Apitius, and L. Toldo, "Identification of adverse drug event assertive sentences in medical case reports," in Proc. 1st Int. Workshop Knowl. Discovery Health Care Manage., Eur. Conf. Mach. Learn. Principles Practice Knowl. Discovery Databases, 2011, pp. 16-27.
-
(2011)
Proc. 1st Int. Workshop Knowl. Discovery Health Care Manage., Eur. Conf. Mach. Learn. Principles Practice Knowl. Discovery Databases
, pp. 16-27
-
-
Gurulingappa, H.1
Fluck, J.2
Hofmann-Apitius, M.3
Toldo, L.4
-
55
-
-
84876692441
-
Mining fda drug labels for medical conditions
-
Q. Li et al., "Mining fda drug labels for medical conditions," BMC Med. Inform. Decision Making, vol. 13, no. 1, pp. 1-11, 2013.
-
(2013)
BMC Med. Inform. Decision Making
, vol.13
, Issue.1
, pp. 1-11
-
-
Li, Q.1
-
56
-
-
65649138430
-
A systematic analysis of performance measures for classification tasks
-
M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for classification tasks," Inf. Process. Manage., vol. 45, no. 4, pp. 427-437, 2009.
-
(2009)
Inf. Process. Manage.
, vol.45
, Issue.4
, pp. 427-437
-
-
Sokolova, M.1
Lapalme, G.2
-
57
-
-
85043494295
-
Bridging learning analytics and cognitive computing for big data classification in microlearning video collections
-
D. Dessi, G. Fenu, M. Marras, and D. R. Recupero, "Bridging learning analytics and cognitive computing for big data classification in microlearning video collections," Comput. Human Behavior, pp. 1-10, 2018.
-
(2018)
Comput. Human Behavior
, pp. 1-10
-
-
Dessi, D.1
Fenu, G.2
Marras, M.3
Recupero, D.R.4
-
58
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett, "An introduction to ROC analysis," Pattern Recognit. Lett., vol. 27, no. 8, pp. 861-874, 2006.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
59
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Jan.
-
Z.-H. Zhou and X.-Y. Liu, "Training cost-sensitive neural networks with methods addressing the class imbalance problem," IEEE Trans. Knowl. Data Eng., vol. 18, no. 1, pp. 63-77, Jan. 2006.
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
-
60
-
-
84986295253
-
Learning deep representation for imbalanced classification
-
C. Huang, Y. Li, C. Change Loy, and X. Tang, "Learning deep representation for imbalanced classification," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 5375-5384.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 5375-5384
-
-
Huang, C.1
Li, Y.2
Change Loy, C.3
Tang, X.4
-
61
-
-
85007256381
-
Training deep neural networks on imbalanced data sets
-
S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy, "Training deep neural networks on imbalanced data sets," in Proc. IEEE Int. Joint Conf. Neural Netw., 2016, pp. 4368-4374.
-
(2016)
Proc. IEEE Int. Joint Conf. Neural Netw.
, pp. 4368-4374
-
-
Wang, S.1
Liu, W.2
Wu, J.3
Cao, L.4
Meng, Q.5
Kennedy, P.J.6
-
62
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," Ann. Math. Statist., vol. 11, no. 1, pp. 86-92, 1940.
-
(1940)
Ann. Math. Statist.
, vol.11
, Issue.1
, pp. 86-92
-
-
Friedman, M.1
|