메뉴 건너뛰기




Volumn 57, Issue , 2015, Pages 333-349

Identifying adverse drug event information in clinical notes with distributional semantic representations of context

Author keywords

Adverse drug events; Corpus annotation; Distributional semantics; Electronic health records; Machine learning; Relation extraction

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; DIAGNOSIS; HEALTH; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; PATIENT TREATMENT; RECORDS MANAGEMENT; SEMANTICS; VECTOR SPACES;

EID: 84949514782     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.08.013     Document Type: Article
Times cited : (83)

References (88)
  • 1
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: towards better research applications and clinical care
    • Jensen P.B., Jensen L.J., Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 2012, 13(6):395-405.
    • (2012) Nat. Rev. Genet. , vol.13 , Issue.6 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 2
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre S.M., Savova G.K., Kipper-Schuler K.C., Hurdle J.F., et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb. Med. Inform. 2008, 35:128-144.
    • (2008) Yearb. Med. Inform. , vol.35 , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3    Hurdle, J.F.4
  • 3
    • 84926659080 scopus 로고    scopus 로고
    • Professional language in Swedish clinical text: linguistic characterization and comparative studies
    • Smith K., Megyesi B., Velupillai S., Kvist M. Professional language in Swedish clinical text: linguistic characterization and comparative studies. Nord. J. Linguist. 2014, 37(02):297-323.
    • (2014) Nord. J. Linguist. , vol.37 , Issue.2 , pp. 297-323
    • Smith, K.1    Megyesi, B.2    Velupillai, S.3    Kvist, M.4
  • 4
    • 11244249628 scopus 로고    scopus 로고
    • Rofecoxib (vioxx) voluntarily withdrawn from market
    • Sibbald B. Rofecoxib (vioxx) voluntarily withdrawn from market. Can. Med. Assoc. J. 2004, 171(9):1027-1028.
    • (2004) Can. Med. Assoc. J. , vol.171 , Issue.9 , pp. 1027-1028
    • Sibbald, B.1
  • 6
    • 0036000276 scopus 로고    scopus 로고
    • Hospitalisations caused by adverse drug reactions (adr): a meta-analysis of observational studies
    • Beijer H., De Blaey C. Hospitalisations caused by adverse drug reactions (adr): a meta-analysis of observational studies. Pharm. World Sci. 2002, 24(2):46-54.
    • (2002) Pharm. World Sci. , vol.24 , Issue.2 , pp. 46-54
    • Beijer, H.1    De Blaey, C.2
  • 8
    • 84858184252 scopus 로고    scopus 로고
    • Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions - a meta-analysis
    • Hakkarainen K.M., Hedna K., Petzold M., Hägg S. Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions - a meta-analysis. PloS One 2012, 7(3):e33236.
    • (2012) PloS One , vol.7 , Issue.3 , pp. e33236
    • Hakkarainen, K.M.1    Hedna, K.2    Petzold, M.3    Hägg, S.4
  • 9
    • 0032417803 scopus 로고    scopus 로고
    • Limitations and strengths of spontaneous reports data
    • Goldman S.A. Limitations and strengths of spontaneous reports data. Clin. Ther. 1998, 20:C40-C44.
    • (1998) Clin. Ther. , vol.20 , pp. C40-C44
    • Goldman, S.A.1
  • 10
    • 33646744337 scopus 로고    scopus 로고
    • Under-reporting of adverse drug reactions
    • Hazell L., Shakir S.A. Under-reporting of adverse drug reactions. Drug Safety 2006, 29(5):385-396.
    • (2006) Drug Safety , vol.29 , Issue.5 , pp. 385-396
    • Hazell, L.1    Shakir, S.A.2
  • 18
    • 84882783145 scopus 로고    scopus 로고
    • Dictionary construction and identification of possible adverse drug events in Danish clinical narrative text
    • Eriksson R., Jensen P.B., Frankild S., Jensen L.J., Brunak S. Dictionary construction and identification of possible adverse drug events in Danish clinical narrative text. J. Am. Med. Inform. Assoc. 2013, 20(5):947-953.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , Issue.5 , pp. 947-953
    • Eriksson, R.1    Jensen, P.B.2    Frankild, S.3    Jensen, L.J.4    Brunak, S.5
  • 19
    • 84898815541 scopus 로고    scopus 로고
    • Dose-specific adverse drug reaction identification in electronic patient records: temporal data mining in an inpatient psychiatric population
    • Eriksson R., Werge T., Jensen L.J., Brunak S. Dose-specific adverse drug reaction identification in electronic patient records: temporal data mining in an inpatient psychiatric population. Drug Safety 2014, 37(4):237-247.
    • (2014) Drug Safety , vol.37 , Issue.4 , pp. 237-247
    • Eriksson, R.1    Werge, T.2    Jensen, L.J.3    Brunak, S.4
  • 20
    • 65349157361 scopus 로고    scopus 로고
    • Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study
    • Wang X., Hripcsak G., Markatou M., Friedman C. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J. Am. Med. Inform. Assoc. 2009, 16(3):328-337.
    • (2009) J. Am. Med. Inform. Assoc. , vol.16 , Issue.3 , pp. 328-337
    • Wang, X.1    Hripcsak, G.2    Markatou, M.3    Friedman, C.4
  • 21
    • 84899409127 scopus 로고    scopus 로고
    • Annotation analysis for testing drug safety signals using unstructured clinical notes
    • LePendu P., Iyer S., Fairon C., Shah N.H., et al. Annotation analysis for testing drug safety signals using unstructured clinical notes. J. Biomed. Semant. 2012, 3(S-1):S5.
    • (2012) J. Biomed. Semant. , vol.3 , pp. S5
    • LePendu, P.1    Iyer, S.2    Fairon, C.3    Shah, N.H.4
  • 26
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner Ö., Solti I., Cadag E. Extracting medication information from clinical text. J. Am. Med. Inform. Assoc. 2010, 17(5):514-518.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 514-518
    • Uzuner, Ö.1    Solti, I.2    Cadag, E.3
  • 27
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/va challenge on concepts, assertions, and relations in clinical text
    • Uzuner Ö., South B.R., Shen S., DuVall S.L. 2010 i2b2/va challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inform. Assoc. 2011, 18(5):552-556.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.5 , pp. 552-556
    • Uzuner, Ö.1    South, B.R.2    Shen, S.3    DuVall, S.L.4
  • 31
    • 77955287813 scopus 로고    scopus 로고
    • An overview of metamap: historical perspective and recent advances
    • Aronson A.R., Lang F.-M. An overview of metamap: historical perspective and recent advances. J. Am. Med. Inform. Assoc. 2010, 17(3):229-236.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.3 , pp. 229-236
    • Aronson, A.R.1    Lang, F.-M.2
  • 32
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical text analysis and knowledge extraction system (ctakes): architecture, component evaluation and applications
    • Savova G.K., Masanz J.J., Ogren P.V., Zheng J., Sohn S., Kipper-Schuler K.C., Chute C.G. Mayo clinical text analysis and knowledge extraction system (ctakes): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 2010, 17(5):507-513.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3    Zheng, J.4    Sohn, S.5    Kipper-Schuler, K.C.6    Chute, C.G.7
  • 33
    • 80053241946 scopus 로고    scopus 로고
    • Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010
    • de Bruijn B., Cherry C., Kiritchenko S., Martin J., Zhu X. Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J. Am. Med. Inform. Assoc. 2011, 18(5):557-562.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.5 , pp. 557-562
    • de Bruijn, B.1    Cherry, C.2    Kiritchenko, S.3    Martin, J.4    Zhu, X.5
  • 34
    • 84875945878 scopus 로고    scopus 로고
    • Recognizing clinical entities in hospital discharge summaries using structural support vector machines with word representation features
    • Tang B., Cao H., Wu Y., Jiang M., Xu H. Recognizing clinical entities in hospital discharge summaries using structural support vector machines with word representation features. BMC Med. Inform. Decis. Making 2013, 13(Suppl 1):S1.
    • (2013) BMC Med. Inform. Decis. Making , vol.13 , pp. S1
    • Tang, B.1    Cao, H.2    Wu, Y.3    Jiang, M.4    Xu, H.5
  • 35
    • 85019586312 scopus 로고    scopus 로고
    • Uth_ccb: a report for semeval 2014-task 7 analysis of clinical text
    • Zhang Y., Wang J., Tang B., Wu Y., Jiang M., Chen Y., Xu H. Uth_ccb: a report for semeval 2014-task 7 analysis of clinical text. SemEval 2014, 802-806.
    • (2014) SemEval , pp. 802-806
    • Zhang, Y.1    Wang, J.2    Tang, B.3    Wu, Y.4    Jiang, M.5    Chen, Y.6    Xu, H.7
  • 36
    • 84902545076 scopus 로고    scopus 로고
    • Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study
    • Skeppstedt M., Kvist M., Nilsson G.H., Dalianis H. Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study. J. Biomed. Inform. 2014, 49:148-158.
    • (2014) J. Biomed. Inform. , vol.49 , pp. 148-158
    • Skeppstedt, M.1    Kvist, M.2    Nilsson, G.H.3    Dalianis, H.4
  • 37
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman W.W., Bridewell W., Hanbury P., Cooper G.F., Buchanan B.G. A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 2001, 34(5):301-310.
    • (2001) J. Biomed. Inform. , vol.34 , Issue.5 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.F.4    Buchanan, B.G.5
  • 39
    • 84890885756 scopus 로고    scopus 로고
    • Negation detection in Swedish clinical text: an adaption of NegEx to Swedish
    • Skeppstedt M. Negation detection in Swedish clinical text: an adaption of NegEx to Swedish. J. Biomed. Seman. 2011, 2(S-3):S3.
    • (2011) J. Biomed. Seman. , vol.2 , pp. S3
    • Skeppstedt, M.1
  • 41
    • 34247380744 scopus 로고    scopus 로고
    • A novel hybrid approach to automated negation detection in clinical radiology reports
    • Huang Y., Lowe H.J. A novel hybrid approach to automated negation detection in clinical radiology reports. J. Am. Med. Inform. Assoc. 2007, 14(3):304-311.
    • (2007) J. Am. Med. Inform. Assoc. , vol.14 , Issue.3 , pp. 304-311
    • Huang, Y.1    Lowe, H.J.2
  • 42
    • 84911878838 scopus 로고    scopus 로고
    • Negation's not solved: generalizability versus optimizability in clinical natural language processing
    • Wu S., Miller T., Masanz J., Coarr M., Halgrim S., Carrell D., Clark C. Negation's not solved: generalizability versus optimizability in clinical natural language processing. PloS One 2014, 9(11):e112774.
    • (2014) PloS One , vol.9 , Issue.11 , pp. e112774
    • Wu, S.1    Miller, T.2    Masanz, J.3    Coarr, M.4    Halgrim, S.5    Carrell, D.6    Clark, C.7
  • 43
    • 57149137175 scopus 로고    scopus 로고
    • Machine learning and rule-based approaches to assertion classification
    • Uzuner Ö., Zhang X., Sibanda T. Machine learning and rule-based approaches to assertion classification. J. Am. Med. Inform. Assoc. 2009, 16(1):109-115.
    • (2009) J. Am. Med. Inform. Assoc. , vol.16 , Issue.1 , pp. 109-115
    • Uzuner, Ö.1    Zhang, X.2    Sibanda, T.3
  • 45
    • 70349470770 scopus 로고    scopus 로고
    • Context: an algorithm for determining negation, experiencer, and temporal status from clinical reports
    • Harkema H., Dowling J.N., Thornblade T., Chapman W.W. Context: an algorithm for determining negation, experiencer, and temporal status from clinical reports. J. Biomed. Inform. 2009, 42(5):839-851.
    • (2009) J. Biomed. Inform. , vol.42 , Issue.5 , pp. 839-851
    • Harkema, H.1    Dowling, J.N.2    Thornblade, T.3    Chapman, W.W.4
  • 46
    • 84897084647 scopus 로고    scopus 로고
    • Medtime: a temporal information extraction system for clinical narratives
    • Lin Y.-K., Chen H., Brown R.A. Medtime: a temporal information extraction system for clinical narratives. J. Biomed. Inform. 2013, 46:S20-S28.
    • (2013) J. Biomed. Inform. , vol.46 , pp. S20-S28
    • Lin, Y.-K.1    Chen, H.2    Brown, R.A.3
  • 47
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating temporal relations in clinical text: 2012 i2b2 challenge
    • amiajnl-2013
    • Sun W., Rumshisky A., Uzuner O. Evaluating temporal relations in clinical text: 2012 i2b2 challenge. J. Am. Med. Inform. Assoc. 2013, amiajnl-2013.
    • (2013) J. Am. Med. Inform. Assoc.
    • Sun, W.1    Rumshisky, A.2    Uzuner, O.3
  • 49
    • 84937146213 scopus 로고    scopus 로고
    • Temporal expressions in swedish medical text - a pilot study
    • S. Velupillai, Temporal expressions in swedish medical text - a pilot study, in: Proceedings of BioNLP, 2014, pp. 88-92.
    • (2014) Proceedings of BioNLP , pp. 88-92
    • Velupillai, S.1
  • 50
    • 0742321913 scopus 로고    scopus 로고
    • Mining the biomedical literature in the genomic era: an overview
    • Shatkay H., Feldman R. Mining the biomedical literature in the genomic era: an overview. J. Comput. Biol. 2003, 10(6):821-855.
    • (2003) J. Comput. Biol. , vol.10 , Issue.6 , pp. 821-855
    • Shatkay, H.1    Feldman, R.2
  • 51
    • 77953797578 scopus 로고    scopus 로고
    • Exploiting shallow linguistic information for relation extraction from biomedical literature
    • Citeseer
    • Giuliano C., Lavelli A., Romano L. Exploiting shallow linguistic information for relation extraction from biomedical literature. EACL 2006, vol. 18:401-408. Citeseer.
    • (2006) EACL , vol.18 , pp. 401-408
    • Giuliano, C.1    Lavelli, A.2    Romano, L.3
  • 52
    • 80053268344 scopus 로고    scopus 로고
    • Automatic extraction of relations between medical concepts in clinical texts
    • Rink B., Harabagiu S., Roberts K. Automatic extraction of relations between medical concepts in clinical texts. J. Am. Med. Inform. Assoc. 2011, 18(5):594-600.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.5 , pp. 594-600
    • Rink, B.1    Harabagiu, S.2    Roberts, K.3
  • 54
    • 85117730830 scopus 로고    scopus 로고
    • Name tagging with word clusters and discriminative training
    • Citeseer
    • Miller S., Guinness J., Zamanian A. Name tagging with word clusters and discriminative training. HLT-NAACL 2004, vol. 4:337-342. Citeseer.
    • (2004) HLT-NAACL , vol.4 , pp. 337-342
    • Miller, S.1    Guinness, J.2    Zamanian, A.3
  • 57
    • 77952700189 scopus 로고    scopus 로고
    • From frequency to meaning: vector space models of semantics
    • Turney P.D., Pantel P., et al. From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 2010, 37(1):141-188.
    • (2010) J. Artif. Intell. Res. , vol.37 , Issue.1 , pp. 141-188
    • Turney, P.D.1    Pantel, P.2
  • 58
    • 61949432274 scopus 로고    scopus 로고
    • Empirical distributional semantics: methods and biomedical applications
    • Cohen T., Widdows D. Empirical distributional semantics: methods and biomedical applications. J. Biomed. Inform. 2009, 42(2):390-405.
    • (2009) J. Biomed. Inform. , vol.42 , Issue.2 , pp. 390-405
    • Cohen, T.1    Widdows, D.2
  • 59
    • 84922792890 scopus 로고    scopus 로고
    • Semantic Spaces of Clinical Text: Leveraging Distributional Semantics for Natural Language Processing of Electronic Health Records
    • Licentiate Thesis, Stockholm University.
    • A. Henriksson, Semantic Spaces of Clinical Text: Leveraging Distributional Semantics for Natural Language Processing of Electronic Health Records, Licentiate Thesis, Stockholm University, 2013.
    • (2013)
    • Henriksson, A.1
  • 61
    • 84922778522 scopus 로고    scopus 로고
    • Generating features for named entity recognition by learning prototypes in semantic space: the case of de-identifying health records
    • IEEE
    • Henriksson A., Dalianis H., Kowalski S. Generating features for named entity recognition by learning prototypes in semantic space: the case of de-identifying health records. IEEE International Conference on Bioinformatics and Biomedicine 2014, 450-457. IEEE.
    • (2014) IEEE International Conference on Bioinformatics and Biomedicine , pp. 450-457
    • Henriksson, A.1    Dalianis, H.2    Kowalski, S.3
  • 64
    • 84946725881 scopus 로고    scopus 로고
    • A large scale evaluation of distributional semantic models: parameters, interactions and model selection
    • Lapesa G., Evert S. A large scale evaluation of distributional semantic models: parameters, interactions and model selection. Trans. Assoc. Comput. Linguist. 2014, 2:531-545.
    • (2014) Trans. Assoc. Comput. Linguist. , vol.2 , pp. 531-545
    • Lapesa, G.1    Evert, S.2
  • 65
    • 84949526974 scopus 로고    scopus 로고
    • Learning multiple distributed prototypes of semantic categories for named entity recognition
    • (in press).
    • A. Henriksson, Learning multiple distributed prototypes of semantic categories for named entity recognition, Int. J. Data Min. Biomed. (in press).
    • Int. J. Data Min. Biomed
    • Henriksson, A.1
  • 67
    • 79957471572 scopus 로고    scopus 로고
    • Drug-related admissions and hospital-acquired adverse drug events in Germany: a longitudinal analysis from 2003 to 2007 of ICD-10-coded routine data
    • Stausberg J., Hasford J. Drug-related admissions and hospital-acquired adverse drug events in Germany: a longitudinal analysis from 2003 to 2007 of ICD-10-coded routine data. BMC Health Serv. Res. 2011, 11(1):134.
    • (2011) BMC Health Serv. Res. , vol.11 , Issue.1 , pp. 134
    • Stausberg, J.1    Hasford, J.2
  • 71
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 76
    • 84906930943 scopus 로고    scopus 로고
    • Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors
    • M. Baroni, G. Dinu, G. Kruszewski, Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors, in: Association for Computational Linguistics, vol. 1, 2014, pp. 238-247.
    • (2014) Association for Computational Linguistics , vol.1 , pp. 238-247
    • Baroni, M.1    Dinu, G.2    Kruszewski, G.3
  • 77
    • 84906930025 scopus 로고    scopus 로고
    • Word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method
    • Y. Goldberg, O. Levy, Word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method, Available from: arXiv:. arxiv:1402.3722.
    • Goldberg, Y.1    Levy, O.2
  • 78
    • 84906736226 scopus 로고    scopus 로고
    • Stagger: an open-source part of speech tagger for swedish
    • Östling R. Stagger: an open-source part of speech tagger for swedish. Northern Euro. J. Lang. Technol. 2013, 3:1-18.
    • (2013) Northern Euro. J. Lang. Technol. , vol.3 , pp. 1-18
    • Östling, R.1
  • 80
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 81
    • 0001669952 scopus 로고
    • A stagewise rejective multiple test procedure based on a modified Bonferroni test
    • Hommel G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 1988, 75(2):383-386.
    • (1988) Biometrika , vol.75 , Issue.2 , pp. 383-386
    • Hommel, G.1
  • 82
    • 84949488438 scopus 로고    scopus 로고
    • Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements
    • amiajnl-2013
    • Lingren T., Deleger L., Molnar K., Zhai H., Meinzen-Derr J., Kaiser M., Stoutenborough L., Li Q., Solti I. Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements. J. Am. Med. Inform. Assoc. 2013, amiajnl-2013.
    • (2013) J. Am. Med. Inform. Assoc.
    • Lingren, T.1    Deleger, L.2    Molnar, K.3    Zhai, H.4    Meinzen-Derr, J.5    Kaiser, M.6    Stoutenborough, L.7    Li, Q.8    Solti, I.9
  • 83
    • 37249010774 scopus 로고    scopus 로고
    • Evaluation of training with an annotation schema for manual annotation of clinical conditions from emergency department reports
    • Chapman W.W., Dowling J.N., Hripcsak G. Evaluation of training with an annotation schema for manual annotation of clinical conditions from emergency department reports. Int. J. Med. Inform. 2008, 77(2):107-113.
    • (2008) Int. J. Med. Inform. , vol.77 , Issue.2 , pp. 107-113
    • Chapman, W.W.1    Dowling, J.N.2    Hripcsak, G.3
  • 84
    • 84856376731 scopus 로고    scopus 로고
    • Enhancing clinical concept extraction with distributional semantics
    • Jonnalagadda S., Cohen T., Wu S., Gonzalez G. Enhancing clinical concept extraction with distributional semantics. J. Biomed. Inform. 2012, 45(1):129-140.
    • (2012) J. Biomed. Inform. , vol.45 , Issue.1 , pp. 129-140
    • Jonnalagadda, S.1    Cohen, T.2    Wu, S.3    Gonzalez, G.4
  • 85
    • 84888192341 scopus 로고    scopus 로고
    • Unsupervised biomedical named entity recognition: experiments with clinical and biological texts
    • Zhang S., Elhadad N. Unsupervised biomedical named entity recognition: experiments with clinical and biological texts. J. Biomed. Inform. 2013, 46(6):1088-1098.
    • (2013) J. Biomed. Inform. , vol.46 , Issue.6 , pp. 1088-1098
    • Zhang, S.1    Elhadad, N.2
  • 86
    • 84901278183 scopus 로고    scopus 로고
    • Identifying synonymy between SNOMED clinical terms of varying length using distributional analysis of electronic health records
    • American Medical Informatics Association
    • Henriksson A., Conway M., Duneld M., Chapman W.W. Identifying synonymy between SNOMED clinical terms of varying length using distributional analysis of electronic health records. AMIA Annual Symposium Proceedings 2013, 600-609. American Medical Informatics Association.
    • (2013) AMIA Annual Symposium Proceedings , pp. 600-609
    • Henriksson, A.1    Conway, M.2    Duneld, M.3    Chapman, W.W.4
  • 87
    • 85121310785 scopus 로고    scopus 로고
    • Corpus-driven terminology development: populating swedish SNOMED CT with synonyms extracted from electronic health records
    • Association for Computational Linguistics
    • Henriksson A., Skeppstedt M., Kvist M., Duneld M., Conway M. Corpus-driven terminology development: populating swedish SNOMED CT with synonyms extracted from electronic health records. Proceedings of BioNLP 2013, Association for Computational Linguistics.
    • (2013) Proceedings of BioNLP
    • Henriksson, A.1    Skeppstedt, M.2    Kvist, M.3    Duneld, M.4    Conway, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.