메뉴 건너뛰기




Volumn 32, Issue 22, 2016, Pages 3444-3453

Drug drug interaction extraction from biomedical literature using syntax convolutional neural network

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPUTER LANGUAGE; DATA MINING; DRUG INTERACTION; HUMAN; PUBLICATION;

EID: 85008626797     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw486     Document Type: Article
Times cited : (195)

References (39)
  • 1
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program
    • American Medical Informatics Association, Washington, DC
    • Aronson, A. R. (2001) Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium, American Medical Informatics Association, Washington, DC.
    • (2001) Proceedings of the AMIA Symposium
    • Aronson, A.R.1
  • 3
    • 0142166851 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Bengio, Y. et al. (2003) A neural probabilistic language model. J. Mach. Learning Res., 3, 1137-1155.
    • (2003) J. Mach. Learning Res. , vol.3 , pp. 1137-1155
    • Bengio, Y.1
  • 4
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Bengio, Y. et al. (2013) Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798-1828.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 1798-1828
    • Bengio, Y.1
  • 5
    • 85027526998 scopus 로고    scopus 로고
    • UTurku: Drug named entity recognition and drug-drug interaction extraction using SVM classification and domain knowledge
    • Atlanta, GA, USA
    • Bjö rne, J. et al. (2013) UTurku: drug named entity recognition and drug-drug interaction extraction using SVM classification and domain knowledge. The North American Chapter of the Association for Computational Linguistics, Atlanta, GA, USA, p. 651.
    • (2013) The North American Chapter of the Association for Computational Linguistics , pp. 651
    • Bjö Rne, J.1
  • 6
    • 0345863927 scopus 로고    scopus 로고
    • The Unified Medical Language System (UMLS): Integrating biomedical terminology
    • Bodenreider, O. (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res., 32, D267-D270.
    • (2004) Nucleic Acids Res. , vol.32 , pp. D267-D270
    • Bodenreider, O.1
  • 7
  • 9
    • 84907962535 scopus 로고    scopus 로고
    • Why we need an efficient and careful pharmacovigilance
    • Businaro, R. (2013) Why we need an efficient and careful pharmacovigilance. J. Pharmacovigilance, 1, 1000e1110
    • (2013) J. Pharmacovigilance , vol.1 , pp. 1000e1110
    • Businaro, R.1
  • 10
    • 85031322240 scopus 로고    scopus 로고
    • FBK-irst: A multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information
    • Atlanta, GA, USA
    • Chowdhury, M. F. M. and Lavelli, A. (2013) FBK-irst: A multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information. The North American Chapter of the Association for Computational Linguistics, Atlanta, GA, USA, p. 53.
    • (2013) The North American Chapter of the Association for Computational Linguistics , pp. 53
    • Chowdhury, M.F.M.1    Lavelli, A.2
  • 11
    • 80053558787 scopus 로고    scopus 로고
    • Natural language processing (almost) from scratch
    • Collobert, R. et al. (2011) Natural language processing (almost) from scratch. J. Mach. Learning Res., 12, 2493-2537.
    • (2011) J. Mach. Learning Res. , vol.12 , pp. 2493-2537
    • Collobert, R.1
  • 12
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K. and Singer, Y. (2002) On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learning Res., 2, 265-292.
    • (2002) J. Mach. Learning Res. , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 13
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput., 10, 1895-1923.
    • (1998) Neural Comput. , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 14
    • 33847294345 scopus 로고    scopus 로고
    • RelEx-Relation extraction using dependency parse trees
    • Fundel, K. et al. (2007) RelEx-Relation extraction using dependency parse trees. Bioinformatics, 23, 365-371.
    • (2007) Bioinformatics , vol.23 , pp. 365-371
    • Fundel, K.1
  • 15
    • 84926066336 scopus 로고    scopus 로고
    • Jointly learning word representations and composition functions using predicate-argument structures
    • Hashimoto, K. et al. (2014) Jointly learning word representations and composition functions using predicate-argument structures. EMNLP, 14, 1544-1555.
    • (2014) EMNLP , vol.14 , pp. 1544-1555
    • Hashimoto, K.1
  • 17
    • 84883756903 scopus 로고    scopus 로고
    • The DDI corpus: An annotated corpus with pharmacological substances and drug-drug interactions
    • Herrero-Zazo, M. et al. (2013) The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions. J. Biomed. Inform., 46, 914-920.
    • (2013) J. Biomed. Inform. , vol.46 , pp. 914-920
    • Herrero-Zazo, M.1
  • 18
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and Helmholtz free energy
    • Hinton, G. E. and Zemel, R. S. (1994) Autoencoders, minimum description length, and Helmholtz free energy. Adv. Neural Inform. Processing Syst., 6, 3-10.
    • (1994) Adv. Neural Inform. Processing Syst. , vol.6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 19
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C. W. and Lin, C. J. (2002) A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw., 13, 415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 21
    • 34848845892 scopus 로고    scopus 로고
    • An empirical study of tokenization strategies for biomedical information retrieval
    • Jiang, J. and Zhai, C. (2007) An empirical study of tokenization strategies for biomedical information retrieval. Inform. Retrieval, 10, 341-363.
    • (2007) Inform. Retrieval , vol.10 , pp. 341-363
    • Jiang, J.1    Zhai, C.2
  • 22
    • 84930689846 scopus 로고    scopus 로고
    • Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach
    • Kim, S. et al. (2015) Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach. J. Biomed. Inform., 55, 23-30.
    • (2015) J. Biomed. Inform. , vol.55 , pp. 23-30
    • Kim, S.1
  • 23
    • 78651287426 scopus 로고    scopus 로고
    • DrugBank 3. 0: A comprehensive resource for 'omics' research on drugs
    • Knox, C. et al. (2011) DrugBank 3. 0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res., 39, D1035-D1041.
    • (2011) Nucleic Acids Res. , vol.39 , pp. D1035-D1041
    • Knox, C.1
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A. et al. (2012) Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. Processing Syst., 25, 1097-1105.
    • (2012) Adv. Neural Inform. Processing Syst. , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1
  • 26
    • 85027521586 scopus 로고    scopus 로고
    • Jackson's death raises questions about drug interactions
    • June
    • Landau, E. (2009) Jackson's Death Raises Questions About Drug Interactions. CNN, June 26, 2009.
    • (2009) CNN , vol.26 , pp. 2009
    • Landau, E.1
  • 27
    • 59449087310 scopus 로고    scopus 로고
    • Exploring strategies for training deep neural networks
    • Larochelle, H. et al. (2009) Exploring strategies for training deep neural networks. J. Mach. Learning Res., 10, 1-40.
    • (2009) J. Mach. Learning Res. , vol.10 , pp. 1-40
    • Larochelle, H.1
  • 28
    • 84906924508 scopus 로고    scopus 로고
    • Dependency-based word embeddings
    • Levy, O. and Goldberg, Y. (2014) Dependency-based word embeddings. ACL, 2, 302-308.
    • (2014) ACL , vol.2 , pp. 302-308
    • Levy, O.1    Goldberg, Y.2
  • 29
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • Mikolov, T. et al. (2013) Linguistic regularities in continuous space word representations. HLT-NAACL, 13, 746-751.
    • (2013) HLT-NAACL , vol.13 , pp. 746-751
    • Mikolov, T.1
  • 30
    • 41549159851 scopus 로고    scopus 로고
    • Feature forest models for probabilistic HPSG parsing
    • Miyao, Y. and Tsujii, J. (2008) Feature forest models for probabilistic HPSG parsing. Comput. Linguistics, 34, 35-80.
    • (2008) Comput. Linguistics , vol.34 , pp. 35-80
    • Miyao, Y.1    Tsujii, J.2
  • 33
    • 84908008292 scopus 로고    scopus 로고
    • Lessons learnt from the DDIExtraction-2013 shared task
    • Segura Bedmar, I. et al. (2014) Lessons learnt from the DDIExtraction-2013 shared task. J. Biomed. Inform., 51, 152-164.
    • (2014) J. Biomed. Inform. , vol.51 , pp. 152-164
    • Segura Bedmar, I.1
  • 34
    • 67650706774 scopus 로고    scopus 로고
    • Classification of imbalanced data: A review
    • Sun, Y. et al. (2009) Classification of imbalanced data: a review. Int. J. Pattern Recognit. Artificial Intell., 23, 687-719.
    • (2009) Int. J. Pattern Recognit. Artificial Intell. , vol.23 , pp. 687-719
    • Sun, Y.1
  • 36
    • 84897550107 scopus 로고    scopus 로고
    • Regularization of neural networks using dropconnect
    • The North American Chapter of the Association for Computational Linguistics, Atlanta, GA, USA
    • Wan, L. et al. (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th International Conference On Machine Learning (ICML-13), The North American Chapter of the Association for Computational Linguistics, Atlanta, GA, USA, pp. 1058-1066.
    • (2013) Proceedings of the 30th International Conference on Machine Learning (ICML-13) , pp. 1058-1066
    • Wan, L.1
  • 37
    • 84959893810 scopus 로고    scopus 로고
    • Semantic relation classification via convolutional neural networks with simple negative sampling
    • Lisbon, Portugal
    • Xu, K. et al. (2015). Semantic relation classification via convolutional neural networks with simple negative sampling. In: Proceedings of Empirical Methods in Natural Language Processing, SIGDAT, Lisbon, Portugal, pp. 536-540.
    • (2015) Proceedings of Empirical Methods in Natural Language Processing, SIGDAT , pp. 536-540
    • Xu, K.1
  • 38
    • 84959865227 scopus 로고    scopus 로고
    • Classifying relations via long short term memory networks along shortest dependency path
    • Lisbon, Portugal
    • Yan, X. et al. (2015). Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Path. In: Proceedings of Empirical Methods in Natural Language Processing. SIGDAT, Lisbon, Portugal, pp. 1785-1794.
    • (2015) Proceedings of Empirical Methods in Natural Language Processing. SIGDAT , pp. 1785-1794
    • Yan, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.