-
1
-
-
0031032055
-
Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality
-
D. C. Classen, S. L. Pestotnik, R. S. Evans, J. F. Lloyd, and J. P. Burke, "Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality." JAMA, vol. 277, no. 4, pp. 301-6, 1997.
-
(1997)
JAMA
, vol.277
, Issue.4
, pp. 301-306
-
-
Classen, D.C.1
Pestotnik, S.L.2
Evans, R.S.3
Lloyd, J.F.4
Burke, J.P.5
-
3
-
-
0034464820
-
Analysis of the direct cost of adverse drug reactions in hospitalised patients
-
R. Bordet, S. Gautier, H. Le Louet, B. Dupuis, and J. Caron, "Analysis of the direct cost of adverse drug reactions in hospitalised patients," European Journal of Clinical Pharmacology, vol. 56, no. 12, pp. 935-941, 2001.
-
(2001)
European Journal of Clinical Pharmacology
, vol.56
, Issue.12
, pp. 935-941
-
-
Bordet, R.1
Gautier, S.2
Le Louet, H.3
Dupuis, B.4
Caron, J.5
-
5
-
-
85034785373
-
-
F. Sadeque, T. Pedersen, T. Solorio, P. Shrestha, N. Rey-Villamizar, and S. Bethard, "Why Do They Leave: Modeling Participation in Online Depression Forums," pp. 14-19, 2016.
-
(2016)
Why Do They Leave: Modeling Participation in Online Depression Forums
, pp. 14-19
-
-
Sadeque, F.1
Pedersen, T.2
Solorio, T.3
Shrestha, P.4
Rey-Villamizar, N.5
Bethard, S.6
-
6
-
-
84906234695
-
The Role of Facebook in Crush the Crave, a Mobile-and Social Media-Based Smoking Cessation Intervention: Qualitative Framework Analysis of Posts
-
7
-
L. L. Struik and N. B. Baskerville, "The Role of Facebook in Crush the Crave, a Mobile-and Social Media-Based Smoking Cessation Intervention: Qualitative Framework Analysis of Posts," Journal of Medical Internet Research, vol. 16, no. 7, p. e170, 7 2014.
-
(2014)
Journal of Medical Internet Research
, vol.16
, Issue.7
, pp. e170
-
-
Struik, L.L.1
Baskerville, N.B.2
-
8
-
-
84947292185
-
-
A. Nakhasi, R. J. Passarella, S. G. Bell, M. J. Paul, M. Dredze, and P. J. Pronovost, "Malpractice and Malcontent: Analyzing Medical Complaints in Twitter," 2012.
-
(2012)
Malpractice and Malcontent: Analyzing Medical Complaints in Twitter
-
-
Nakhasi, A.1
Passarella, R.J.2
Bell, S.G.3
Paul, M.J.4
Dredze, M.5
Pronovost, P.J.6
-
10
-
-
85040765628
-
Review of trends in health social media analysis
-
Ed. IEEE
-
L. Akhtyamova, M. Alexandrov, and J. Cardiff, "Review of Trends in Health Social Media Analysis," Proc. of 12-th Intern. Conf. on Computer Sciences and Information Technologies, Ed. IEEE, 2017, p. 4.
-
(2017)
Proc. of 12-th Intern. Conf. On Computer Sciences and Information Technologies
, pp. 4
-
-
Akhtyamova, L.1
Alexandrov, M.2
Cardiff, J.3
-
11
-
-
85007061942
-
Social media mining for toxicovigilance: Automatic monitoring of prescription medication abuse from twitter
-
A. Sarker, K. OConnor, R. Ginn, M. Scotch, K. Smith, D. Malone, and G. Gonzalez, "Social Media Mining for Toxicovigilance: Automatic Monitoring of Prescription Medication Abuse from Twitter," Drug Safety, vol. 39, no. 3, pp. 231-240, 2016.
-
(2016)
Drug Safety
, vol.39
, Issue.3
, pp. 231-240
-
-
Sarker, A.1
Connor, K.O.2
Ginn, R.3
Scotch, M.4
Smith, K.5
Malone, D.6
Gonzalez, G.7
-
12
-
-
84928485543
-
Identification of consumer adverse drug reaction messages on social media
-
M. Yang, X. Wang, and M. Kiang, "Identification of Consumer Adverse Drug Reaction Messages on Social Media," PACIS 2013 Proceedings, 2013.
-
(2013)
PACIS 2013 Proceedings
-
-
Yang, M.1
Wang, X.2
Kiang, M.3
-
14
-
-
85039449540
-
Adverse drug reaction classification with deep neural networks
-
T. Huynh, Y. He, A. Willis, and S. Rüger, "Adverse Drug Reaction Classification With Deep Neural Networks," Proceedings of COLING 2016: Technical Papers, COLING, pp. 877-887.
-
Proceedings of COLING 2016: Technical Papers, COLING
, pp. 877-887
-
-
Huynh, T.1
He, Y.2
Willis, A.3
Rüger, S.4
-
15
-
-
85040535875
-
Adverse drug event detection in tweets with semi-supervised convolutional neural networks
-
New York, New York, USA: ACM Press
-
K. Lee, A. Qadir, S. A. Hasan, V. Datla, A. Prakash, J. Liu, and O. Farri, "Adverse Drug Event Detection in Tweets with Semi-Supervised Convolutional Neural Networks," in Proceedings of the 26th International Conference on World Wide Web-WWW '17. New York, New York, USA: ACM Press, 2017, pp. 705-714.
-
(2017)
Proceedings of the 26th International Conference On World Wide Web-WWW '17
, pp. 705-714
-
-
Lee, K.1
Qadir, A.2
Hasan, S.A.3
Datla, V.4
Prakash, A.5
Liu, J.6
Farri, O.7
-
16
-
-
84924285421
-
Portable automatic text classification for adverse drug reaction detection via multi-corpus training
-
A. Sarker and G. Gonzalez, "Portable automatic text classification for adverse drug reaction detection via multi-corpus training," Journal of Biomedical Informatics, vol. 53, pp. 196-207, 2015.
-
(2015)
Journal of Biomedical Informatics
, vol.53
, pp. 196-207
-
-
Sarker, A.1
Gonzalez, G.2
-
17
-
-
84927917741
-
Utilizing social media data for pharmacovigilance: A review HHS public access
-
A. Sarker, R. Ginn, A. Nikfarjam, K. O'Connor, K. Smith, S. Jayaraman, and G. Gonzalez, "Utilizing Social Media Data for Pharmacovigilance: A Review HHS Public Access," J Biomed Inform, vol. 54, pp. 202-212, 2015.
-
(2015)
J Biomed Inform
, vol.54
, pp. 202-212
-
-
Sarker, A.1
Ginn, R.2
Nikfarjam, A.3
O'Connor, K.4
Smith, K.5
Jayaraman, S.6
Gonzalez, G.7
-
18
-
-
84855919063
-
Identifying potential adverse effects using the web: A new approach to medical hypothesis generation
-
12
-
A. Benton, L. Ungar, S. Hill, S. Hennessy, J. Mao, A. Chung, C. E. Leonard, and J. H. Holmes, "Identifying potential adverse effects using the web: A new approach to medical hypothesis generation," Journal of Biomedical Informatics, vol. 44, no. 6, pp. 989-996, 12 2011.
-
(2011)
Journal of Biomedical Informatics
, vol.44
, Issue.6
, pp. 989-996
-
-
Benton, A.1
Ungar, L.2
Hill, S.3
Hennessy, S.4
Mao, J.5
Chung, A.6
Leonard, C.E.7
Holmes, J.H.8
-
19
-
-
85051987559
-
Detecting drugs and adverse events from Spanish health social media streams
-
I. Segura-Bedmar, R. Revert, and P. Martínez, "Detecting drugs and adverse events from Spanish health social media streams," Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi) at EACL 2014, pp. 106-115, 2014.
-
(2014)
Proceedings of the 5th International Workshop On Health Text Mining and Information Analysis (Louhi) at EACL 2014
, pp. 106-115
-
-
Segura-Bedmar, I.1
Revert, R.2
Martínez, P.3
-
20
-
-
84978034203
-
Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts
-
I. Korkontzelos, A. Nikfarjam, M. Shardlow, A. Sarker, S. Ananiadou, and G. H. Gonzalez, "Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts," Journal of Biomedical Informatics, vol. 62, pp. 148-158, 2016.
-
(2016)
Journal of Biomedical Informatics
, vol.62
, pp. 148-158
-
-
Korkontzelos, I.1
Nikfarjam, A.2
Shardlow, M.3
Sarker, A.4
Ananiadou, S.5
Gonzalez, G.H.6
-
23
-
-
85120057290
-
Relation extraction from clinical texts using domain invariant convolutional neural network
-
S. Kumar Sahu, A. Anand, K. Oruganty, and M. Gattu, "Relation extraction from clinical texts using domain invariant convolutional neural network," Proceedings of the 15th Workshop on Biomedical Natural Language Processing, no. October, 2016.
-
(2016)
Proceedings of the 15th Workshop On Biomedical Natural Language Processing
, Issue.OCTOBER
-
-
Kumar Sahu, S.1
Anand, A.2
Oruganty, K.3
Gattu, M.4
-
25
-
-
84894543184
-
-
T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient Estimation of Word Representations in Vector Space," 1 2013.
-
(2013)
Efficient Estimation of Word Representations in Vector Space
, vol.1
-
-
Mikolov, T.1
Chen, K.2
Corrado, G.3
Dean, J.4
-
26
-
-
85039153766
-
-
A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, "Bag of Tricks for Efficient Text Classification," 7 2016.
-
(2016)
Bag of Tricks for Efficient Text Classification
, vol.7
-
-
Joulin, A.1
Grave, E.2
Bojanowski, P.3
Mikolov, T.4
-
27
-
-
85039169985
-
-
P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, "Enriching Word Vectors with Subword Information," 7 2016.
-
(2016)
Enriching Word Vectors with Subword Information
, vol.7
-
-
Bojanowski, P.1
Grave, E.2
Joulin, A.3
Mikolov, T.4
|